DESIGNING OF DISTRIBUTION SUBSTATION LIGHTNING PROTECTION SYSTEM TO MINIMISE DAMAGE DUE TO LIGHTNING

W.A.K.T. Indrajith

09/8659

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2014

DESIGNING OF DISTRIBUTION SUBSTATION LIGHTNING PROTECTION SYSTEM TO MINIMISE DAMAGE DUE TO LIGHTNING

Wanni Arachchi Kankanamge Thushara Indrajith

09/8659

Dissertation submitted in partial fulfillment of the requirements for the

Degree Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2014

Declaration

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)".

Signature of the candidateersity of Moratuwa, Sri Lanka. Date: (W.A.K.Turrent fith Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor (Dr. Asanka S. Rodrigo) Date:

Abstract

Lightning interferences in the Distribution lines is a major problem in CEB network. A significant number of substation failures are reported due to lightning. These failures occurred due to over voltages in the distribution line and it is impossible to prevent. These over voltages lead to a failure in the insulation of the transformer. Selecting transformers having high insulating level will increase the costs and volume of it. Therefore to decrease insulation levels and its cost, it is necessary to control over voltages and let them to earth by means of arresters. Performance of the arrester depends on the impulse resistance of the earth electrode, lead wire length and the substation installation. It is not necessary for earthing level of each location. The Ground Flash Density in the area is an important parameter to decide the maximum lightning current experienced during the life time of the equipment and the required failure rate.

This dissertation discusses the over voltages due to lightning and its danger to Distribution Substation. The effect of arrester earthing resistance, Lead wire length, Substation configuration and medium voltage line arrangements at the substation in the CEB distribution Network are also studied for this investigation.

Digital simulation has a very important role on predicting the lightning performance of the distribution substation and distribution lines. PSCAD software is used for transient modeling of a three phase distribution right substation and arrester for analyzing their performance during lightning. The method used to analyze the increase in voltage due to lightning was analyzed by using this software.

Keywords - Lightning, over voltages, Lightning Arrester, Earth Resistance, Lead wire

Acknowledgements

First, I pay my sincere gratitude to Dr.Asanka Rodrigo who encouraged and guided me to conduct this investigation and on preparation of final dissertation.

I extend my sincere gratitude to Prof. J.P. Karunadasa, Head of the Department of Electrical Engineering and all the lectures and visiting lectures of the Department of Electrical Engineering for the support extended during the study period and officers in the post graduate office for helping in various ways to clarify things related to the my academic work.

I would like to thank Mr. H.A.C Pushpakumara Deputy General Manager (Southern Province) and staff of Ceylon Electricity Board for assistance towards completion of this project.

I also thank to Eng. Nadun Chamikara who gave me extreme support and valuable instructions during the simulations and preparation of final dissertation.

It is a great pleasure to remember the kind co-operation extended by the colleagues in the post graduate program triends, myamorner, Father in the ward specially my beloved with a Udayanganee who helped me to continue the studies from start www.lib.mrt.ac.lk

TABLE OF CONTENTS

Declaration of the candidate & Supervisor		i	
Abst	tract		ii
Acknowledgements			iii
Tabl	e of con	tent	iv
List of Figures		vii	
List	of Table	s	ix
List	of Appe	ndices	х
1.	Intro	Introduction	
	1.1	Background	1
	1.2	Statement of Problem	2
	1.3	Objectives	2
	1.4	Purpose of Study	2
	1.5	Literature review	3
	1.6	Methodology	6
2.	Medi	Voltage Distribution System in the Galle Area Electronic Theses & Dissertations	8
	2.1	MV Network www.lib.mrt.ac.lk	8
	2.2	Line Arrangements at Substations	10
		2.2.1 Line Arrangement 1 (LA-1)	11
		2.2.2 Line Arrangement 2 (LA-2)	11
		2.2.3 Line Arrangement 3 (LA-3)	11
	2.3	Different Configuration of Substation Installation	11
		2.3.1 Configuration 1	11
		2.3.2 Configuration 2	12
		2.3.3 Configuration 3	12
	2.4	Earthing of the Substation	13
		2.4.1 Earth Resistivity of the Area	14
		2.4.2 Impulse Earth Resistance	14
	2.5	Transformer Insulation Strength	15
	2.6	Lightning Arrester	17
3.	Light	ning Exposure of Distribution Lines and Substations	18

		3.1	Introduction	18
		3.2	Mechanism of Lightning	18
		3.3	Ground Flash Density (GFD)	21
		3.4	Stroke Current Magnitude and Distribution	23
		3.5	Lightning Effects on Distribution Line	24
			3.5.1 Direct Lightning Strike	24
		3.6	Potential rise at Transformer due to Direct Strike	27
			3.6.1 Effect of Arrester Lead Length	28
			3.6.2 Surge Impedance of Distribution Line	28
		3.7	Magnitude of Arrester Currents	29
	4.	Mode	eling, Simulation and Analysis of Lightning Performance of	
		Subst	tation	34
		4.1	Introduction	34
		4.2	Modeling of the System Components	34
			4.2.1 Modeling Lightning Surge Current Wave	34
		li-1	4.2.2 Modeling of the Arrester	35
			4.2.3 Modeling of the Distribution Transformer Electronic Theses & Dissertations 4.2.4 Modeling of the Distribution Line	37 38
		4.3	Modeling of the Substation	38
		4.4	Simulation the Substation Model	39
			4.4.1 Simulation the Substation Configurations	39
			4.4.1.1 Simulation of Configuration 1 (Model 1)	40
			4.4.1.2 Simulation of Configuration 2 (Model 2)	41
			4.4.1.3 Simulation of Configuration 3 (Model 3)	43
			4.4.2 Summary of Simulation Results	44
		4.5	Simulation the Configuration-2 with Varying Earth Resistance	46
		4.6	Simulation results of the Configuration-2 with different Lead	
			Lengths	47
		4.7	Simulation the Substations with Different Line Arrangements	49
		4.8	Analysis of Surge Transmitted to the Low Voltage Side	51
	5.	Discu	ussion	54
	6.	Concl	lusion and Future Work	58

6.1 Conclusion	58
6.2 Future Work	59
Reference List	61
Appendix A: Technical Details of the Arrester	63

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

		Page
Figure 2.1	Segment of MV Network of Galle Area	10
Figure 2.2	Feeder Segment of the MV Network	10
Figure 2.3	Configuration-1	12
Figure 2.4	Configuration-2	12
Figure 2.5	Configuration-3	13
Figure 2.6	Relative Strength vs. Breakdown time of Transformer Insulation	15
Figure 2.7	Breakdown Voltage Vs. Time	17
Figure 3.1	Formation of Lightning Flash	19
Figure 3.2	Types of Lightning	20
Figure 3.3	Isokeraunic Map of Sri Lanka	21
Figure 3.4	Probability of Current Being Exceeded	24
Figure 3.5	Pole Geometry	25
Figure 3.6	Equivalent Circuit For Arrester Protecting Transformer	27
Figure 3.7	Arrester Discharge Current IEEE C62.22 University of Moratuwa, Sri Lanka.	29
Figure 3	Lightning Wave Formeses & Dissertations	30
Figure 3.9	Equivalent Circuit for Case 1	31
Figure 3.10	Equivalent Circuit for Case 2	32
Figure 3.11	Equivalent Circuit for Case 3	33
Figure 4.1	Surge Current Source Model	35
Figure 4.2	IEEE Arrester Model	36
Figure 4.3	33kV Arrester Model	37
Figure 4.4	Distribution Transformer Surge Model	37
Figure 4.5	Distribution Line Model	38
Figure 4.6	Line Termination	38
Figure 4.7	Distribution Substation Model for Surge Analysis	39
Figure 4.8	Equivalent Circuit for Configuration-1	40
Figure 4.9	Transformer HT Terminal Voltage With Respect to Body	40
Figure 4.10	Transformer Body Voltage with Respect to Earth	41
Figure 4.11	Equivalent Circuit for Configuration -2	41

Figure 4.12	Transformer HT Terminal Voltage with Respect to Body	42
Figure 4.13	Lightning Current wave form and Transformer Body Voltage with Respect to earth	42
Figure 4.14	Equivalent Circuit for Configuration- 3	43
Figure 4.15	Transformer HT Terminal Voltage with Respect to Earth	43
Figure 4.16	Transformer Body Voltage with respect to earth	44
Figure 4.17	Transformer HT Terminal Voltages with Respect to Body	44
Figure 4.18	Transformer Body Voltage Variations with Different Configurations	45
Figure 4.19	Transformer Body Voltage with earth Resistance	46
Figure 4.20	Transformer HT Terminal Voltage with respect to Body with Earth Resistance	47
Figure 4.21	Transformer Body Voltage with Respect to earth with varying Lead Length	48
Figure 4.22	Transformer Body Voltage with Respect to Earth with varying Lead Length	48
Figure 1 22	C C	40
Figure 4.23 Figure 4	Modeling Line Arrangement-3 Transformer Body Voltage with Respect to Earth for Different Line Arrangement. WWW.lib.mrt.ac.lk	49 50
	Modeling Line Arrangement-3 Transformer Body Voltage with Respect to Earth for Different Electronic Theses & Dissertations	
Figure 4	Modeling Line Arrangement-3 Transformer Body Voltage with Respect to Earth for Different Electronic Theses & Dissertations Line Arrangement. WWW.11b.mrt.ac.lk Transformer Body Voltage with Respect to earth for line	50
Figure 4	Modeling Line Arrangement-3 Transformer Body Voltage with Respect to Earth for Different Electronic Theses & Dissertations Line Arrangement. WWW.11b.mrt.ac.lk Transformer Body Voltage with Respect to earth for line arrangement 3	50 50
Figure 4.25 Figure 4.26	Modeling Line Arrangement-3 Transformer Body Voltage with Respect to Earth for Different Electronic Theses & Dissertations Line Arrangement. WWW.11b.mrt.ac.lk Transformer Body Voltage with Respect to earth for line arrangement 3 High Frequency Transformer Model	50 50 51
Figure 4.25 Figure 4.26 Figure 4.27	Modeling Line Arrangement-3 Transformer Body Voltage with Respect to Earth for Different Electronic Theses & Dissertations Line Arrangement. WWW.110.mrt.ac.lk Transformer Body Voltage with Respect to earth for line arrangement 3 High Frequency Transformer Model Simulation of voltage transferred to low voltage side	50 50 51 52
Figure 4.25 Figure 4.26 Figure 4.27 Figure 4.28	Modeling Line Arrangement-3 Transformer Body Voltage with Respect to Earth for Different Electronic Theses & Dissertations Line Arrangement. WWW.110.mrt.ac.lk Transformer Body Voltage with Respect to earth for line arrangement 3 High Frequency Transformer Model Simulation of voltage transferred to low voltage side Secondary Voltage with Respect to Transformer Body	50 50 51 52 53

LIST OF TABLES

Table 2.1	33 kV Outgoing Feeders in Bataduwa GSS	9
Table 2.2	11kV Outgoing Feeders of Dickela Primary Substation	9
Table 2.3	11kV Outgoing Feeders of Koggala Primary Substation	9
Table 2.4	Breakdown Level of Transformer	16
Table 3.1	Relationship Between Isokeraunik Level and Lightning Flashes per km2 per Year	22
Table 3.2	Number of Thunder Days	22
Table 3.3	Number of Direct Flashes Per Year of Feeder	26
Table 3.4	Maximum Arrester Current During LF of Transformer	30
Table 4.1	Lead Length of Different Configurations	39
Table 4.2	Element Values for Transformer Model	51

Page

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF APPENDICIES

Appendix A Technical Data of Surge Arrester

Page

62

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk