DEVELOPING WOUND DRESSING FROM BACTERIAL CELLULOSE

Nipunika Shashikala Gamage

(09/8096)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations
www.lib.mrt.ac.lk
Degree Master of Science

Department of Chemical and Process Engineering

University of Moratuwa
Sri Lanka

July 2013
DEVELOPING WOUND DRESSING FROM BACTERIAL CELLULOSE

Nipunika Shashikala Gamage

(09/8096)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Thesis submitted in fulfillment of the requirements for the degree Master of Science

Department of Chemical and Process Engineering

University of Moratuwa
Sri Lanka

July 2013
Abstract

Developing Wound Dressing from Bacterial Cellulose

Cellulose produced by bacterium *Acetobacter xylinum* has unique properties including high mechanical strength, high water absorption capacity and highly pure fiber network structure. These properties have enabled bacterial cellulose to be used in applications such as Nata de Coco, enzyme immobilization, artificial skin and wound dressings.

The objective of this project was to investigate the production and properties of bacterial cellulose as appropriate for wound dressings using coconut water as the main substrate medium. Preliminary focus of the research was to identify and isolate *Acetobactor xylinium* from a kombucha mixed culture. Bacterial cellulose pellicles were prepared by static fermentation of *Acetobacter xylinum* containing culture in coconut water while supplementing with glucose and (NH₄)₂H₂PO₄ at an initial pH of 4.3.

Properties of resulting bacterial cellulose pellicles were investigated for its strength, structure and permeability characteristics. The average thickness of each pellicle was 3 mm in wet form and 0.25 mm after oven drying. Young’s modulus was in the range of 1 - 3 G Pa up to 15% moisture content. Fourier Transform infrared spectroscopy (FTIR) on oven dried bacterial cellulose were very much similar to commercial products of bacterial cellulose wound dressings. Water vapor transmission rate (WVTR) through the dressing was in the range of 5-15 (g/hr⁻¹ m⁻²) while increasing the moisture content decreased the WVTR. These investigations proved that there is an optimum moisture content of 15% that gives the most appropriate properties for a wound dressing.

Further the wound dressings that were prepared and packed in sterile conditions were applied on selected patients. The results showed that dry dressings were more appropriate than wet dressings. However, dry dressings lose their strength when re-absorbing moisture.

In conclusion, it could be said preliminary research showed coconut water can be used in preparation of bacterial cellulose as wound dressing since it has suitable characteristics. However, further research is required to find the variation of properties with moisture content and re-absorption characteristics of bacterial cellulose.

Key words: bacterial cellulose, *Acetobacter xylinum*, coconut water, wound dressing
Acknowledgement

I am very much grateful to Dr. Marliya Ismail, Senior Lecturer, Department of Chemical and Process Engineering, University of Moratuwa for being the main supervisor of this research project.

I am also grateful to Dr Terrence Rohan Chinniah, Senior Lecturer, Department of Microbiology, Faculty of Medicine, University of Colombo, Prof. Mandika Wijeyerathne, Professor, Department of Surgery, Faculty of Medicine, University of Colombo and Prof. Ajith de Alwis, Professor, Department of Chemical and Process Engineering, University of Moratuwa for being co supervisors of this project.

I am thankful to Dr. Marliya Ismail for giving me the moral support and guidance throughout this research work and Dr Terrence Rohan Chinniah for his invaluable advice and training in the microbiological aspects of this project. I am also grateful to Prof. Mandika Wijeyeratne for giving me the opportunity to get clinical exposure without any hesitation while Prof. Ajith de Alwis for giving me words of encouragement along the way.

I owe a word of thanks to Staff Technical Officers, Mrs. Jayanthi Maskorala, Mrs. Renuka Jayalatherachchi and Technical Officers, Mrs. D.L.C. Priyantha Seneviratne and all the staff members of the Microbiology Lab of Medical Faculty of Colombo University for their fullest support in conducting microbial isolation part of the project.

I wish to express my gratitude to Technical Officer, Mrs. I.K Athukorala and Senior Staff Technical Officer Ms. A.S Wahalathanthri and all the other Technical officers and lab assistants of Department of Chemical and Process Engineering, University of Moratuwa for their assistance in carrying out experiments for developing the wound dressing.

I wish to thank to Mr. Bandusena Samarasekera, Senior Lecturer, Department of Material Science and Engineering, University of Moratuwa for facilitating me in obtaining FTIR spectroscopy measurements.
My heartiest thanks will also go to my parents, husband, siblings, all my family members and friends who always gave courage and made persistent confidence in me throughout the completion of this project.

This M.Sc. thesis was supported by University of Moratuwa Senate Research Grant Number SRC/LT/2009/38.

Finally, I would appreciate everybody, who helped me in numerous ways in different stages of the project, which was of utmost importance in bringing out this effort a success.
TABLE OF CONTENTS

Declaration of the candidate & Supervisors... i
Abstract... ii
Acknowledgement .. iii
Table of Content ... v
List of Figures ... ix
List of Tables .. xi
List of Abbreviations ... xii

1 Introduction and Objectives.. 1
 1.1 Introduction .. 1
 1.2 Objectives ... 2

2 Literature Survey.. 3
 2.1 Cellulose ... 3
 2.2 *Acetobacter xylinum* .. 4
 2.3 Bacterial Cellulose .. 5
 2.4 Biosynthesis of Bacterial Cellulose ... 8
 2.5 Fermentation techniques ... 9
 2.6 Culture Media ... 11
 2.6.1 Coconut water culture media .. 11
 2.6.2 Distilled water culture medium .. 14
 2.7 Bacterial Cellulose properties .. 16
 2.7.1 Ultra fine structure .. 16
 2.7.2 High water holding capacity ... 17
 2.7.3 High mechanical strength ... 19
 2.7.4 High mouldability .. 20
 2.7.5 High crystallinity .. 20
 2.7.6 High purity .. 21
 2.7.7 High elasticity ... 21
 2.7.8 High thermal stability .. 21
 2.7.9 High transparency .. 21
 2.7.10 Non- toxicity ... 22
2.8 Purification of Bacterial Cellulose
2.9 Drying of Bacterial Cellulose
2.10 Bacterial Cellulose Applications
 2.10.1 Food industry
 2.10.2 Textile Industry
 2.10.3 Paper Industry
2.11 Medical Applications
 2.11.1 Blood vessels
 2.11.2 Scaffold
 2.11.3 Skin grafts
 2.11.4 Wound Dressing
2.12 Commercially Available Bacterial Cellulose Wound Dressings
2.13 Wound Dressing Packaging
2.14 Bacterial cellulose composites

3 Materials and Methods

3.1 Isolation of Bacterial Cellulose
 3.1.1 Acetobacter xylinum culture
 3.1.2 Preparation of solid culture medium
 3.1.3 Indirect Confirmation of isolated Acetobacter xylinum
 3.1.4 Investigation of sterility by autoclaving
3.2 Application of Wound Dressing
 3.2.1 Preparation of bacterial cellulose pellicles
 3.2.2 Drying of bacterial cellulose pellicles
 3.2.3 Packing of bacterial cellulose wound dressings
 3.2.4 Application of bacterial cellulose wound dressing
3.3 Property Analysis
 3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) Measurement
 3.3.2 Tensile test Measurement
 3.3.3 Measurement of Water vapor transmission rate (WVTR)
 3.3.4 Measurement of Water re-absorption
 3.3.5 Test for Shelf life analysis of dressing packs
4 Results and Discussion

4.1 Isolation of *Acetobacter xylinum*

4.1.1 Isolation of *Acetobacter xylinum* in solid culture medium 49

4.1.2 Verification of *Acetobacter xylinum* through liquid culture medium 53

4.1.3 Verification of sterility by autoclaving 55

4.2 Application of Wound Dressing

4.2.1 Bacterial cellulose pellicles as wound dressings 55

4.2.2 The effect of drying bacterial cellulose pellicles 57

4.2.3 The importance of sterile packaging of bacterial cellulose wound dressings 59

4.2.4 The results of Application of bacterial cellulose wound dressing 60

4.3 Property analysis of Bacterial cellulose wound dressing

4.3.1 FTIR test comparison on bacterial cellulose 62

4.3.2 Tensile strength of bacterial cellulose wound dressing 64

4.3.3 Effect of Water Vapor Transmission Rate (WVTR) through BC Wound Dressing 67

4.3.4 Water re-absorption characteristics of BC 71

4.3.5 Shelf life analysis of packaged dressings 73

5 Conclusions and Future Works

5.1 Conclusions

5.1.1 Identification and isolation of *Acetobacter xylinum* from Kombucha culture 74

5.1.2 Production of bacterial cellulose as appropriate for wound dressing application 74

5.1.3 Investigating the properties of biosynthesized wound dressings 74

5.1.4 Study the effectiveness of bacterial cellulose with clinical assessment 75

5.2 Future Works 75
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Pathways to Cellulose</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Acetobacter xylinum with secreted cellulose fibrils</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Formation of bacterial cellulose fiber bundles</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Pathways of Carbon metabolism in Acetobacter xylinum</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Static fermentation of Bacterial Cellulose</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>RBC fermentation of Bacterial Cellulose</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Agitated fermentation of Bacterial Cellulose</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Microfibrill organization on bacterial cellulose and plant</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Range of structure design of polysaccharaides in comparison with synthetic and living materials</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>SEM images of surface morphology of BC film in dry form and in re-swollen form</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Water retention value comparison</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Transparency of bacterial cellulose</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Freeze dried bacterial and evaporated dried bacterial cellulose</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Blood vessels made out of bacterial cellulose for micro surgeries</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>Commercially available bacterial cellulose wound dressings</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Summary of Materials and Methods</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Directions taken to compare the strength</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Dumbbell shape specimen</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>WVTR test apparatus</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Apparatus for moisture re-absorption test</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Pathways of Carbon metabolism in Acetobacter xylinum</td>
<td>50</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Modified agar plates with CaCO₃</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Comparison of nutrient agar mediums</td>
<td>52</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Isolated bacterial fermentation in coconut water medium</td>
<td>53</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Dried bacterial cellulose wound dressings</td>
<td>57</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Packaging of bacterial cellulose wound dressing</td>
<td>58</td>
</tr>
</tbody>
</table>
Figure 4.7 FTIR absorption spectroscopy for bacterial cellulose 61
Figure 4.8 Tensile test results of bacterial cellulose wound dressing with 8% moisture content 64
Figure 4.9 SEM diagrams of Bacterial cellulose of bacterial cellulose 66
Figure 4.10 Time vs. weight loss in WVTR analysis 67
Figure 4.11 Moisture re-absorption characteristics of Bacterial Cellulose 71
LIST OF TABLES

Table 1.1 Objectives 2
Table 2.1 Strains of *Acetobacter* used in various studies 5
Table 2.2 Cellulose producing bacterial species 6
Table 2.3 Basic composition of coconut water 12
Table 2.4 Coconut water enrichment media for *Acetobacter xylinum* 12
 Fermentation
Table 2.5 Distilled water culture media for *Acetobacter xylinum* fermentation 14
Table 2.6 Young’s modulus of Bacterial Cellulose in static media 19
Table 2.7 Young’s Modulus of other wound dressing 20
Table 2.8 Commercially available wound dressing packaging materials 32
Table 2.9 Bacterial cellulose composites 33
Table 3.1 Solid medium selection 36
Table 3.2 Composition of modified nutrient agar plates 38
Table 3.3 Composition of re-modified agar medium 38
Table 3.4 Composition of liquid medium for confirmation of *Acetobacter xylinum* 39
Table 3.5 Composition of BHI 40
Table 3.6 Medium for preparation of bacterial cellulose pellicles 41
Table 3.7 Bacterial Cellulose Pellicle purification 42
Table 3.8 Details of the clinical trial 43
Table 3.9 Tensile Strength test specimen details 45
Table 4.1 Observation on verification of *Acetobacter xylinum* 53
Table 4.2 Bacterial cellulose wound dressing preparation studies 55
Table 4.3 Moisture content of wound dressings 57
Table 4.4 Summary of the trial wound dressing application 59
Table 4.5 Details of Specimens for FTIR analysis 62
Table 4.6 FTIR absorption wavenumbers of bond in bacterial cellulose 62
Table 4.7 Tensile test calculation of wound dressings 65
Table 4.8 WVTR values 69
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>Bacterial cellulose</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain Heart Infusion</td>
</tr>
<tr>
<td>CS</td>
<td>citrate synthase</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>GK</td>
<td>Glucokinase</td>
</tr>
<tr>
<td>G Pa</td>
<td>Giga Pascal</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>M Pa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>PGA</td>
<td>phosphoglycerate</td>
</tr>
<tr>
<td>PGM</td>
<td>phosphoglucomutase</td>
</tr>
<tr>
<td>RBC</td>
<td>Rotating Biological Contactor</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron microscopy</td>
</tr>
<tr>
<td>UDPGlc</td>
<td>uridine diphosphoglucose</td>
</tr>
<tr>
<td>WVTR</td>
<td>Water Vapor Transmission Rate</td>
</tr>
</tbody>
</table>