THERMAL PERFORMANCE OF

DIFFERENT ROOF AND INSULATION SYSTEMS

IN TROPICAL THERMAL ENVIRONMENTS.

The Dissertation Presented to the Faculty Of Architecture of the University Of Moratuwa, Sri Lanka for the

4

Final Year Examination In M. Sc. (Architecture), and to the Royal Institute of British Architects, for (R.I.B.A.) Part II Examination

පුස්තකාලය මොරඩුව විශ්ව විදනාලය. ශු ලං ନଡାଠପ୍ରଥି, DEAL CHINTAKA KANCHANA NIKAPITIYA.

DEPARTMENT OF ARCHITECTURE

UNIVERSITY OF MORATUWA

SRI LANKA

2000

74072

~ 2.

0

72 "00"

677.86

ARCHITEC

M. Sc / B.-SC

3 () MAY 2000

DISSERTATION DESIGN

OF

Of Mo

×

Univer

A c k n o w l e d g e m e n t s

I am deeply indebted to Professor Nimal de Silva, Head Dept. of Architecture, in the University of Moratuwa, for his inspiring guidance and encouragement, to complete this task successfully.

Dr. Rohinton Emannuel lecturer, for his constructive criticism, encouragement and help in the development of this study and for guiding me to make this dissertation a success.

Dr. Ranjith Dayarathna, and Dr. L.S.R. Perera, dissertation cordinators and year masters, for giving their thoughts and comments to enrich this study.

Funding for this project was provided by the University of Moratuwa, under Senate Research Committee (SRC) grant (No. 00/01//01). The author wishes to acknowledge the support received from the SRC and in particular its chairman professor B.L. Tennekoon.

My grateful thanks to my beloved Mother and Father for giving me, all the courage, guidance and support to complete this project.

Also to my dearest Madhuwanthi ,for sharing all the hard ships and difficulties and encouraging me to make this a success.

.)

4

Finally, I thank all those who helped me in numerous ways to see to its successful completion.

CONTENTS

>

•

4

ACKNOWLEDGEMENTS

LIST OF ILLUSTRATIONS

- LIST OF PLATES
- LIST OF FIGURES
- LIST OF TABLES

CHAPTER ONE

- 1.0 INTRODUCTION
 - 1.1 The roof as the main heat gaining element of a building
 - 1.2 Problems
 - 1.3 Objectives
 - 1.4 Limitation
 - 1.5 Theory
 - 1.6

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Method of study. www.lib.mrt.ac.lk

1.7 Analysis method

CHAPTER TWO

2.0 **BACKGROUND STUDY**

- 2.1 Heat and human comfort
- 2.2 Requirement for occupancy comfort
- 2.3 Indoor Climate
- 2.4 Comfort standards
- 2.5 **Designing for comforts**
- 2.6 Quality of comfort
- 3.0 THE NATURE OF HEAT
- 4.0 INSULATION
- 5.0 CONDENSATION
- 6.0 ENVIRONMENTAL CONDITIONS AND THEIR MEASUREMENT.

- 7.0 INSULATION OF COLD STORES USING REFLECTIVE INSULATION
- 8.0 CLIMATIC CONDITIONS IN COLOMBO.
- 9.0 SRI LANKAN TRADITIONAL ROOFING SYSTEMS AND THEIR IMPACTS ON INDOOR THERMAL COMFORT.
- 10.0 PROBLEMS IN ROOFS REGARDING THERMAL PERFORMANCE.

CHAPTER THREE

7

4

3.0 METHODOLOGY

- 3.1 Instruments And Equipment's
- 3.2. Process Of Research

CHAPTER FOUR

- 4.0 RESULTS
 - 4.1 Data Tables with / without Insulations
 - University of Moratuwa, Sri Lanka
 - 4.2 Data Table Percentage Of Heat Changing Ratio

CHAPTER FIVE

5.0 ANALYSIS

- 5.1 Thermal performance of Calicut Tile with Insulation
- 5.2 Thermal performance of Asbestos with Insulation
- 5.3 Thermal performance of Zinc Alum cladding with Insulation
- 5.4 Thermal performance of Whitewashed Asbestos with Insulation.
- 5.5 Thermal performance of Half Round Tiles on Asbestos with Insulation.
- 5.6 Relative performance of all Roof Claddings with Insulation.
- 5.7 Recommendations

5.8 Heat changing ratio.

- 5.8.1 Thermal performance of Calicut Tile with Insulation.
- 5.8.2 Thermal performance of Asbestos with Insulation.
- 5.8.3 Thermal performance of Zinc Alum with insulation.
- 5.8.4 Thermal performance of Whitewashed Asbestos with Insulation.

- 5.8.5 Thermal performance of H.R. Tiles on Asbestos with Insulation
- 5.8.6 Recommendations.

CHAPTER SIX

7

4

ł

- 6.0 CONCLUSION
 - 6.1 Summary Of Findings
 - 6.2 Limitations
 - 6.3 Direction for further study.

BIBLIOGRAPHY

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Plate 1.	3D View of the experimental model	73
Plate 2.	Data logger – (HOBO)	74
Plate 3.	An Isometric view of of the heat sink assembly.	74
Plate 4.	500 w heat source	75
Plate 5.	Voltage stabilizer	75
Plate 6.	Positioning of roof cladding and the thermometer	78
Plate 7.	Experiment with Calicut Tile with Insulation	95
Plate 8.	Experiment with Asbestos Cladding with Insulation	96
Plate 9.	Experiment with Zinc Allum sheets with Insulation	97
Plate 10.	Experiment with White washed Asbestos with Insulation	98
Plate 11.	Experiment with Half Round Tiles on Asbestos with Insulation	99

>

LIST OF FIGURES

Fig.1.	The Earth Sun Relationship.	3
Fig.2.	The Angle Of Incidence.	4
Fig.3.	Length Of Path Through The Atmosphere.	4
Fig.4.	Variation Of Direct Solar Intensity With Height.	5
Fig.5.	Passage Of Radiation Through The Atmosphere.	5
Fig.6.	Heat Release From The Ground And The Atmosphere.	5
Fig.7.	Proportions Of Heat Flowing Downwards From Ceiling.	13
Fig.8.	Comparision Of Celsius And Kelvin Temperature Scales.	17
Fig.9.	Demonstrate Quantity Of Of Heat	18
Fig.10.	Conduction	20
Fig.11.	Convection.	20
Fig.12.	Radiation	21
Fig.13.	Illustrating Unit Conductivity.	22
Fig.14.	Typical Conductivity ("K" Values)	23
Fig.15.	An Uninsulated Stud – Frame Weatherboard Wall.	25
Fig.16.	Reflectivity Of Surfaces	28
Fig.17.	Daily Mean Rise In Temperature (K) Of Test Pannels Exposed To Sun.	30
Fig.18.	Reflective Insulation Placed On The Face Of Studs Or At Center Of Air Space.	31
Fig.19.	Air Space Vertical – Heat Flow Horizontal	34
Fig.20.	Air Space Horizontal – Heat Flow Downwards.	35
Fig.21.	Air Space Horizontal – Heat Flow Upwards.	35
Fig.22.	Air Space 45 Deg. – Heat Flow Downwards.	36
Fig.23.	Air Space 45 Deg Heat Flow Upwards.	36
Fig.24.	Factory Roof Section	40
Fig.25.	Pitched Roof	41
Fig.26.	Flat Metal Roof.	42
Fig.27.	Effect Of Moisture On Insulation.	45
Fig.28.	Flat Roof With Insulation/Sarking & Vapour Barrier	46
Fig.29.	Temperature Gradient Across Wall.	47
Fig.30.	Comfort Yard Stick.	50
Fig.31.	Insulation Costs.	54
Fig.32.	Insulation Quantity Chart.	56
Fig.33.	Thirty Year Trends In Diurinal Temperature Variation During The	
	Hottest Month (April)	58
-	Thirty Year Average Day Time Thermal Comfort In The CMR	59
Fig.35.	Nighttime Thermal Comfort Patterns In The CMR	60
Fig.36.	Daytime Thermal Comfort Patterns In The CMR	60
Fig.37.	Front, Side Elevation Of The Experimental Models	73

4

.

7

٠.

LIST OF TABLES

×

4

Table 1.	Thermal resistance of air spaces.	36
Table 2.	Reflectivity and emissivity of various surfaces and effective	37
	Emissivities of air spaces.	
Table 3.	Surface Resistance - Still & Moving Air Spaces.	37
Table 4.	Thermal Resistance of attic spaces.	37
Table 5.	Thermal Resistance of attic spaces.	38
Table 6.	Typical properties of some common materials	38
Table 7.	Temperature Data – for different roof systems	
	(with Insulation / without Insulation)	00 - 00
Table 8.	Percentages of heat changing ratios for	
	Different roof & Insulation combinations	00 - 00

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk