STUDY ON APPLICABILITY OF ACI AND DOE MIX DESIGN METHODS FOR PAVING BLOCKS

K.Gopinath

118028P

Department of Civil Engineering

University of Moratuwa Sri Lanka

January 2013

STUDY ON APPLICABILITY OF ACI AND DOE MIX DESIGN METHODS FOR PAVING BLOCKS

K.Gopinath

Thesis submitted in partial fulfillment of the requirement for the degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

JANUARY 2013

DECLARATION

I, Gopinath Kathiravelu, hereby declare that the content of this thesis is an output of the original research work carried out by me under the supervision of **Dr.K.Baskaran**, over a period of 14 months at the Department of Civil Engineering, University of Moratuwa, Sri Lanka. Further, this thesis does not contain any previously published material to the best of my knowledge, except where the acknowledgement is made with due reference.

Signature:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Signature	of Supervisor:	Date:

ABSTRACT

Presently local manufacturers select the initial mix proportions for CPBs in a random basis and improve it through several trials to attain the final mix. Whereas either identification of new mix proportioning method or modification of existing mix design methods yet remains to be researched. In view of the above, applicability of contemporary mix design methods such as American Concrete Institute (ACI) Method and Department of Environment (DoE) Method to mix proportion the concrete paving blocks (CPBs) were studied experimentally in the present study. In line with both mix design methods, constituents of CPBs were estimated for characteristic compressive strengths, from 15 N/mm² to 50 N/mm², a range that approximately satisfies the requirements of the Sri Lankan Standard for CPBs. Based on the estimated proportions, trial mixes were cast and tested for compression at 7 and 28 days and from the experimental observations, some suggestions are made in this thesis.

Moreover, adoptability of ACT mix design method with local materials is experimentally verified with under of test samples and it can be concluded that many sand samples being tested failed to fall within the fineness modulus range specified in ACI method, leaving local sand to be unsuitable in many cases. Hence, a method of combining sand samples is identified in the literatures and presented in the thesis, using which sand samples can be made suitable for ACI Method of mix proportioning.

Further, effect of fine aggregate proportions on compressive strength was studied through set of experiments. Mix proportions were estimated using DoE method for Grade 15 and Grade 50 for finer and coarser sands (94% and 34 % passes through 600 μ m sieves respectively) and cubes were cast. They were tested on 7 and 28 days and the test results have shown that the cubes cast with fine sand have attained slightly higher compressive strength to that of coarser sand.

Key words: concrete paving blocks, mix design, ACI Method, DoE Method, target mean strength

DEDICATION

I dedicate this work first to the Almighty who bestow me infinite zeal to work 'against the tides' and to my parents who aspire me to achieve greater heights.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

Mere words are indeed inadequate to convey my deep sense of gratitude to all those who assisted me in completing this research project, in various sorts, to the best of my ability.

First of all, I'm infinitely gratitude to my research supervisor **Dr. K.Baskaran** as right from pursuing the research grant till the thesis correction, he but none, has been anchoring my efforts. He, not only inspired me towards the achievement of the set objectives, but also enlightened me about the true culture of research.

This research work was supported by University of Moratuwa Senate Research Grant Number SRC/LT/2011/23 and I wish to express my gratitude to them. Further, I'm pleased to offer my humble gratitude to **Prof. S.M.A. Nanayakkara** - Head – Department of Civil Engineering, **Prof. M.T.R. Jayasinghe, Prof. H. S. Thilakasiri** - Research Coordinator **Prof. (Mrs.) Chintha Jayasinghe, Prof. H. S. Thilakasiri** - Research Coordinator **Prof. (Mrs.) Chintha Jayasinghe, Prof. H. S. Thilakasiri** - Research Coordinator **Prof. (Mrs.) Chintha Jayasinghe, Prof. H. S.** Thilakasiri assistance towards successful completion of my research in various sorts. At the mean time, I wish to take this opportunity to thank the non academic staff of the Civil Engineering Department and Post Graduate Division of University of Moratuwa, Sri Lanka.

Finally, I wish to thank everybody who probably do not read this, but assisted me in various sorts towards the successful completion of this project.

K.Gopinath 10/01/2013

TABLE OF CONTENTS

	Page
Declaration	Ι
Abstract	Π
Dedication	III
Acknowledgement	IV
Table of Contents	V
List of Figures	VIII
List of Tables	Х
List of Abbreviations	XII

Chapter 1

Introduction	01
University of Moratuwa, Sri Lanka. 1.1 Research Background ctronic Theses & Dissertations	01
1.2 Research Significancew.lib.mrt.ac.lk	01
1.3 Objectives	02
1.4 Methodology	02
1.5 Research Findings	02
1.6 Structure of the thesis	03

Chapter 2

Literature review	05
2.1 Mix proportioning of concrete paving blocks	05
2.1.1 Introduction	05
2.1.2 Requirements for mix proportioning of concrete paving blocks	07
2.2 Contemporary mix proportioning methods of concrete	12
2.2.1 ACI Method	12
2.2.2 DoE Method	18

2.3 Comparative Study on DoE and ACI Mix Design Methods 2		
Chapter 3		
Experimental Pr	ogramme and Analysis	30
3.1 ACI Method V	Verification	30
3.1.1 Selec	ction of Materials	30
3.1.2 Mix	Preparation	31
3.1.3 Conc	crete Paving Blocks Making	32
3.1.4 Conc	crete Cylindrical Specimens Making	33
3.2 DoE Method	Verification	38
3.2.1 Selec	ction of Materials	38
3.2.2 Mix	Preparation	40
3.2.3 Conc	crete Paving Blocks Making	40
3.2.4 Conc	crete Cubes Making University of Moratuwa, Sri Lanka.	40
	Electronic Theses & Dissertations	10
3.3 Suitability	of tocal sandton A Chandle DoE mix design methods	48
3.4 Effect of f	ineness of fine aggregates on compressive strength	
according	to DoE mix design method	52
Chapter 4		
Conclusions and	recommendations	57
4.1 Conclusions		57
4.2 Recommendations 55		57
References		59
Appendix A	Sieve Analysis Results of Local Sand Samples	68
Appendix B	Experimental Data	87

List of Figures

Figure No Title

- Figure 2.1 Relationship between standard deviation and characteristic strength
- Figure 2.2 Relationship between compressive strength and free water cement ratio
- Figure 2.3 Estimated wet density of fully compacted concrete
- Figure 2.4 Recommended proportions of fine aggregate according to percentage passing a 600 µm sieve
- Figure 3.1 Particle Size Distribution of fine aggregate used in the ACI Method Verification
- Figure 3.2 Concrete paving block making machine
- Figure 3.3 Steel rod used to evenly distribute the concrete mix in the paving block mould
- Figure 3.4 Concrete pavingiblock samples made, with Londrese as per ACI method
- Figure 3.5 Concrete cylindrical specimens made as per ACI method while compression testing
- Figure 3.6 Correlation between achieved compressive strengths at both 7 and 28 days and the grade designation of concrete paving blocks as per ACI method
- Figure 3.7 Particle Size Distribution of fine aggregate used in the DoE Method Verification
- Figure 3.8 Cast cubes as per DoE method
- Figure 3.9 Graphical method of combining two aggregates
- Figure 3.10 Particle Size Distribution of finer sand as per Table 3.12
- Figure 3.11 Particle Size Distribution of coarser sand as per Table 3.13
- Figure 3.12(a) Effect of fineness of sand on achieved compressive strength of the cubes at 7 days for sand with different fineness
- Figure 3.12(b) Effect of fineness of sand on achieved compressive strength of the cubes at 28 days for sand with different fineness

List of Tables

Table No	Title		
Table 2.1	Strength requirements of the paving blocks in various countries		
Table 2.2	Recommended grades of paving blocks for different traffic categories		
	as per Indian Standard (IS 15658:2006)		
Table 2.3	Different road classes and their corresponding strength, thickness		
	requirements as per Sri Lankan Standard (SLS 1425: Part 1: 2011)		
Table 2.4	Thickness and chamfer correction factors for compressive strength as		
	per Sri Lankan Standard (SLS 1425: Part 1: 2011)		
Table 2.5	Relationship between Water-Cement Ratio and Compressive Strength		
	of Concrete		
Table 2.6	Recommended slumps for various types of construction		
Table 2.7	Approximate Mixing Water and Air Content Requirements		
	for Different Slumps and Maximum Aggregate Sizes		
Table 2.8	Volume of CoarseyAggregate per Wait Volume of Concrete		
Table 2.9	First Estimate of Aggregate per unit of Volume Mass of fresh Concrete		
Table 2.10	Approximate compressive strength (N/mm ²) of concrete mixes made		
	with a free water / cement ratio of 0.5		
Table 2.11	Approximate free water contents (kg/m ³) required to give vario		
	levels of workability		

Table 3.1	Sieve Analysis of Fine Aggregates in accordance with ASTM C33 -
	92a
Table 3.2	Sample Mix Proportioning Calculation in accordance with ACI 211.1
	91
Table 3.3	Mix Proportions per 1 m^3 of wet concrete after moisture content
	adjustment
Table 3.4	ACI Method Verification Testing Results for Concrete Paving Blocks
	and Cylinders
Table 3.5	Sieve Analysis of Fine Aggregates in accordance with BS 812: Section 103.1: 1985

- Table 3.6Table 3.6: Sample Mix Proportioning Calculation in accordance with
DoE Method BRE Report 1988
- Table 3.7Mix Proportions per one m³ of wet concrete after moisture content
adjustment
- Table 3.8DoE method Verification Compression Testing Results for CPBs &
Cubes at 7 & 28 days
- Table 3.9Suitability of local sand samples to both ACI and DoE method
- Table 3.10Sieve analysis results of Sample 7
- Table 3.11Sieve analysis results of Sample 10
- Table 3.12Sieve analysis of finer sand (sample 7) in accordance with BS 812:Section 103.1: 1985
- Table 3.13Sieve analysis of coarser sand (sample 10) in accordance with BS 812:Section 103.1: 1985
- Table 3.14
 Estimated Mix Proportions as per DoE Method for Sands with

 Different Fineness
- Table 3.15 Achieved Comptessive Strengthwof, the iQubeskat. 7 and 28 days for www.lib.mrt.ac.lk

List of Abbreviations

Abbreviation	Description
СРВ	Concrete Paving Block
ACI	American Concrete Institute
DoE	Department of Environment
W/C ratio	Water/Cement Ratio
Avg.	Average
Coarse Agg.	Coarse Aggregate
Fine Agg.	Fine Aggregate
Max	Maximum
Min	Minimum
BTC	Before Thickness Correction
ATC	After Thickness Correction
TCF	Thickness Correction Factor University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

www.lib.mrt.ac.lk