THE RESPONSE OF CONVENTIONAL STRUCTURES IN SRILANKA FOR EARTHQUAKE

THES IS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING IN STRUCTURAL ENGINEERING DESIGNタ University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

By
Navaratnarajah Sudesan
University of Moratuwa

102867

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF MORATUWA SRI LANKA

102867

JANUARY 2012

DECLARATION

I, Navaratnarajah Sudesan, hereby declare that the content of this thesis is the output of original research work carried out at the Department of Civil Engineering, University of Moratuwa. Whenever the work done by others was used, it was mentioned appropriately as a reference.

[^0]

ACKNOWLEDGEMENT

I am immensely grateful to my supervisor, Prof.M.T.R.Jayasinghe, Professor in Civil Engineering at the Department of Civil Engineering for his invaluable guidance and support throughout my research period which helped to make this research a successful one. He not only provided direction and guidance during this research study, but also encouraged me to really learn and understand structural Engineering.

I would like to thank all the other lecturers in the department of civil Engineering at the University of Moratuwa for the positive attitude they adopted in promoting this research project.

1 wish to thank Eng.Mr.Mangala Silva ,Director,Synergo Consultants (PVT)Ltd, for his valuable assistance provided to me to complete this research successfully.

I wish to acknowledge General Manager, Addl.GM (WSP) and DGM (PC) who helped me for sponsoring by National Water Supply \& Drainage Board and grant duty leave to attend the classes as per the scheduleUniversity of Moratuwa, Sri Lanka.

The assistance given by Mr. Husain attached to Synergo consultants (PVT) Itd is also appreciated.

Last but not least a special gratitude to my wife for bearing with me in making this study a success.

Abstract

Ground water reservoirs are commonly used in this country for storing 200 m 3 to 2000 m 3 water capacities when the area needed water supply having an elevated area (which elevation is sufficient for the head required)and this reservoir can be built on this. In Sri Lanka ground reservoirs are designed as per BS8007 and this design does not cover for earthquakes. However, it seems that no detail investigation has been carried out for response of these ground reservoirs for dynamic loads such as earthquakes.

This research work concentrates on detail dynamic analysis of existing cylindrical ground reservoirs. The results reflect that existing cylindrical ground reservoirs are not sufficiently adequate to withstand even minor earthquakes. This implies that they must be analyzed for earthquakes since their natural period of vibration give. high response for earthquakes which could even trigger structural failure ib. mrt.ac. 1 k

CONTENTS

CHAPTER 1
Introduction
1.1 General 1
1.2 Objectives 3
1.3 Methodology 3
1.4 Main Findings 4
1.5 Arrangement of thesis 4
CHAPTER 2
Literature Review
2.1 Introduction 5
2.2 Spring mass model for seismic analysis 7
2.3 Dynamic Model 9
2.4 Response spectrum concept 12
2.5 Dynamic Lateral Eorces and Total Base shear Lanka. 14
2.6 Moments at Base 19
2.7 Shear Transfef ${ }^{\text {Ctronic Theses \& Dissertations }}$ 21
CHAPTER 3
Existing structures \& Computer Modeling
3.1 Existing structures 24
3.2 Computer modeling 24
3.2.1 Modeling for tank full, 86% fill, 65% fill, 43% fill and 22% fill Conditions
CHAPTER 4
Analysis of structures
4.1 Analysis of $650 \mathrm{~m}^{3}$ tank for full, 86% fill, 65% fill, 43% fill 26 and 22% fill Conditions
4.1.1 Analysis for Earthquakes

CHAPTER 5

Results
5.1 Introduction 31
5.2 Ground reservoir with different water levels of storage 31
5.3 Natural period of Vibration 34
5.3 Comments on results 35
CHAPTER 6
Conclusion \& Future works
6.1 Conclusions 36
6.2 Future Works 36
Referemees University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk
Annex 1
Modeling and Analysis of Tank for 100% of 40
Water filling
Annex 2
Modeling and Analysis of Tank for 86%, 49
$65 \%, 43 \%, 22 \%$ of water filling
Annex 3
SAP Results of Computer Modeling for $100 \%, 86 \%, 65 \%$, 69 $43 \%, 22 \%$ of water filling.

List of Figures

Figure No 1.1 Photograph showing permanent deformation in a 2 Water storage tank in Califonia
Figure No 2.1 Flexible, Non flexible base connections 6
Figure No $2.2 \quad$ Qualitative description of hydrodynamic pressure 8 distribution on tank wall and base.
Figure No $2.3 \quad$ Dynamic model of liquid containing tank rigidly supported 11 On the ground
Figure No 2.4 Normalised response spectra 15
Figure No 2.7(a) Hydrodynamic pressure distribution in tank walls 22
Figure No2.7(b) Membrane shear transfer at the base of circular tanks 22
Figure No $3 \quad$ Cross section of $650 \mathrm{~m}^{3}$ Ground reservoir 30
Figure No 4 SAPLmodebfor 100% tank fitilconditionci Lanka. 44
Figure No 5 Detail falland baseses \& Dissertations 48
Figure No 06 SAP model for 22% tank fill condition 65
Figure No 07 SAP model for 43% tank fill condition 66
Figure No 08 . SAP model for 65% tank fill condition 67
Figure No 09 SAP model for 86% tank fill condition 68
List of Tables
Table No 1 Acceleration coefficient for major centers 16
Table No 2 Importance Factor 16
Table No 3 Structural Response factor for non building 17 structures
Table No 4 Response modification Factor 17
Table No 5 Site factors for various soil profiles 28
Table No 6 Variation of base shear with 31 different height of water filling
Table No 7 Variation of base moment with 32
different height of water filling
Table No 8 Natural period of vibration 34
Table No 9 Values of design concrete shear stress 50
esign concrete shear stress
Table No 10 Values of W;and Weifor differentswater fillingrtations 53
Table No 11 Values of h_{i} and h_{c} for different water filling 54
Table No 12 Values of soil pressure and water pressure 55 for different water filling
Table No $13 \quad P_{i} P_{W}$ and P_{r} for different water filling for soil type $1(s=1.0)$ 56
Table No 14 Pc for different water filling for soil type $1(\mathrm{~s}=1.0)$ 57
Table No 15 Base shear for different water filling for soil type $1(\mathrm{~s}=1.0)$ 58
Table No 16 Mi for different water filling for soil type $1(\mathrm{~s}=1.0)$ 59
Table No 17 Base moment for different water filling for soil type $\mathrm{I}(\mathrm{s}=1.0)$ 60
Table No $18 \quad P_{i} P_{W}$ and P_{r} for different water filling for soil type 3($s=1.5$) 61
Table No 19 Base shear for different water filling for soil type 3($s=1.5$) 62
Table No $20 \quad P_{i} P_{W}$ and P_{r} for different water filling for soil type $1(s=1.5)$ 63
Table No 21 Base moment for different water filling for soil type $1(\mathrm{~s}=1.5)$ 64

List of Graphs

Graph No 1 Impulsive and convective mass factors VS D/H H_{L} ratio 15
Graph No 2 Impulsive and convective height factors VS D/ H_{L} ratio 20
Graph No $3 \quad$ Variation of base shear with Different height of water filling 32
Graph No 4 Variation of base moment with different height of water filling 32

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

NOTATIONS

$C_{c} C_{i} \quad=$ Period-dependent seismic response coefficients defined in 9.4 and 9.5 and C_{t}
$\mathrm{C}_{\mathrm{l}}, \mathrm{C}_{\mathrm{w}}=$ Coefficients for determining the fundamental frequency of the tank -liquid system 9refer to Eq.(9-24) and Fig.9.3.4 (b))
$\mathrm{D} \quad=$ Inside diameter of circular tank, $\mathrm{ft}(\mathrm{m})$
$h_{c} \quad=$ height above the base of the wall of to the centre of gravity of the case including base pressure (EBP), ft (m)
$h_{i}^{\prime} \quad=$ height above the base of the wall to the centre of gravity of the convective lateral force for the case including base pressure (EBP), $\mathrm{ft}(\mathrm{m})$
$h_{i} \quad$ height above the base of the wall to the centre of gravity of the convective lateral force for the case including base pressure (EBP), $\mathrm{ft}(\mathrm{m}$)
$h_{i}^{\prime} \quad=$ height above the base of the wall to the centre of gravity of the convective lateral force for the case including base pressure (EBP), $\mathrm{ft}(\mathrm{m})$
$\mathrm{h}_{\mathrm{r}} \quad=$ height above the base of the wall to the centre of gravity of the tank roof, ft (m)
$h_{w} \quad=$ height above the base of the wall to the centre of gravity of the tank shell, ft (m)
$\mathrm{H}_{\mathrm{L}} \quad=$ Design depth of stored liquid, Thes m) Dissertations
$\mathrm{H}_{\mathrm{w}} \quad=$ Wall height (inside dimension), ft (m)
$=$ Importance factor, from Table 4.1.1 (a)
$\mathrm{m} \quad=$ Total mass per unit width of a rectangular wall $=\mathrm{mi}+\mathrm{mw}^{\prime} \mathrm{ib}-\mathrm{s} 2 / \mathrm{ft}$ per foot of wall width (kg per meter of wall width)
$\mathrm{m}_{\mathrm{i}} \quad=$ Impulsive mass of contained liquid per unit width of a rectangular tank wall, Ib-s2/ft per foot of wall width (kg per meter of wall width)
$\mathrm{m}_{w} \quad=$ Mass per unit width of a rectangular tank wall, $\mathrm{Ib}-\mathrm{s} 2 / \mathrm{ft}$ per foot of wall width (kg per meter of wall width)
$\mathrm{M}_{\mathrm{b}} \quad=$ Bending movement on the entire tank cross section just above the base of the tank wall, $\mathrm{ft}-\mathrm{Ib}$ ($\mathrm{kN}-\mathrm{m}$)
$\mathrm{M}_{\mathrm{c}} \quad=$ Bending movement on the entire tank cross section just above the base of the tank wall (FBP) due to the convective force Pc, ft -Ib
$\mathrm{M}_{\mathrm{c}}^{\prime} \quad=$ Overturning movement at the base of the tank, including the tank bottom and supporting structure (IBP), due to the convective force $\mathrm{Pc}, \mathrm{ft}-\mathrm{Ib}(\mathrm{kN}-\mathrm{m})$
$M_{i} \quad=$ Bending movement on the entire tank cross section just above the base of the tank wall (FBP) due to the convective force $\mathrm{Pc}, \mathrm{ft}-\mathrm{Ib}(\mathrm{kN}-\mathrm{m})$
$\mathrm{M}_{\mathrm{i}}^{\prime}=$ Overturning movement at the base of the tank, including the tank bottom and supporting structure (IBP), due to the convective force $\mathrm{Pc}, \mathrm{ft}-\mathrm{Ib}(\mathrm{kN}-\mathrm{m})$

M_{0}	$=$ Overturning movement at the base of the tank, including the tank bottom and supporting structure (IBP), $\mathrm{ft}-\mathrm{Ib}(\mathrm{kN}-\mathrm{m})$
M_{r}	$=$ Bending movement on the entire tank cross section just above the base of the tank wall (FBP) due to the convective force $\mathrm{Pc}, \mathrm{ft}-\mathrm{Ib}(\mathrm{kN}-\mathrm{m})$
M_{w}	$=$ Bending movement on the entire tank cross section just above the base of the tank wall (FBP) due to the wall inertia force $\mathrm{Pw}^{\prime} \mathrm{ft}-\mathrm{Ib}(\mathrm{kN}-\mathrm{m})$
P_{c}	$=$ Total lateral convective force associated with Wc, $\mathrm{Ib}(\mathrm{kN})$
P_{i}	$=$ Total lateral impulsive force associated with Wi, Ib (kN)
P_{r}	$=$ Lateral inertia force of the accelerating roof $\mathrm{Wr}, \mathrm{Ib}(\mathrm{kN})$
Pw	$=$ Lateral inertia force of the accelerating wall $\mathrm{Ww}, \mathrm{Ib}(\mathrm{kN})$
r	$=$ Inside radius of circular tank, ft (m)
R	$=$ Response modification factor, a numerical coefficient representing the combined effect of the structure's ductility, energy-dissipating capacity, and structural redundancy (Rc for the convective component of the accelerating liquid; Ri for the impulsive component) from Table 4.1.1 (b)
W_{c}	$=$ Equivalent weight of the convective component of the stored liquid, $\mathrm{Ib}(\mathrm{kN})$
W_{i}	$=$ Equivalent weight of the implosive component of the stored liquid, $\mathrm{Ib}(\mathrm{kN})$
W_{L}	$=$ Total equivalent weight of the stored liquid, $\mathrm{Ib}(\mathrm{kN})$
$\mathrm{W}_{\text {w }}$	
Y_{c}	= Density el concrete, $1909 \mathrm{~m} / 73$ ($\mathrm{kNN} / \mathrm{m} 3$) forstandard - weight concrete]
Y_{L}	$=$ Density of contained liquid $1 \mathrm{~b} / \mathrm{ft} 3(\mathrm{kN} / \mathrm{m} 3)$
Y_{w}	$=$ Density of water, $62.43 \mathrm{Ib} / \mathrm{ft} 3(9.807 \mathrm{kN} / \mathrm{m} 3)$
ε	$=$ Effective mass coefficient (ratio of equivalent dynamic mass of the tank shell to its actual total mass), Eq (9-44) and (9-45)
θ	$=$ Polar coordinate angle, degree
$\omega_{\text {c }}$	$\begin{aligned} & =\text { Circular frequency of oscillation of the first (convective) mode of shoeshine, } \\ & \text { radian/s } \end{aligned}$
ω_{i}	$=$ Circular frequency of the impulsive mode of vibration, radian/s
SD1	$=$ Design spectral response acceleration, 5% damped, at a period of 1 second as defined in 9.4.1, expressed as a fraction of the acceleration due to gravity g
Tw	$=$ Average wall thickness, in, (mm)
Tc	$=$ Natural period of the forst (convective) mode of sloshing, s
Ti	$=$ Fundamental period of oscillation of the tank (plus the impulsive component of the contents), s
Ts	$=S_{D 1} / S_{D S}$

[^0]: N, U4
 Eng.N.Sudesan

