APPLICATION OF RANDOM FIELD LINEAR MODEL FOR QUALITY IMPROVEMENT IN PRODUCT DESIGN

₹

1 is i man alton

_ **२**]

Ву

S. KANTHASAMY

Thesis submitted in fulfilment of the award of Ph.D, University of Moratuwa, Sri Lanka.

පුස්තකාලය ංචැරුව විශ්ව විදහලය. **ගුී ලංකාව** පොරුව

Department of Mathematics University of Moratuwa

519 1 2

November 2000

72620

DECLARATION

3

3

The work included in the thesis has not been submitted for any other qualification at any institution.

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk UOM Verified Signature

UOM Verified Signature

Signature of Candidate

UOM Verified Signature

Supervisor

Supervisor

Dedicated to my parents late

3

Mr. S. Kanthasamy & Mrs. S. Kanthasamy of Thumpalai, Point Pedro.

CONTENTS

Contents	i
List of Tables	ÿ
List of Figures	vi
Key to Abbreviations	viii
Acknowledgements	ix
Abstract	. X
Chapter 1	
Robust Parameter Design and Computer Experiments	1
1.1 Introduction	1
1.2 Computer Experiments	3
1.3 Robust Parameter Design	4
1.3.1 Introduction	4
1.3.2 Robust Parameter Design an Overview	6
1.3.3 Mathematical Formulation of Robust Design Problem	n 10
1.4 Taguchi Method	13
1.5 Alternatives to Taguchi Method	21
1.5.1 Response Surface Methodology RSM	22
1.5.2 Dual Response Methodology, Separate Modeling of	
Means and Variances	25

1.5.3 Bayesian Approach for Robust Parameter Design 30

Chapter 2

T

J

Generalized Models and Robust Parameter Design		31
2.1	Introduction	
2.2	Generalized Linear Models and Robust Parameter Design	32
	2.2.1 GLM Methodology for Normal Uncorrelated Observations	
	from Replicated Experiments	35
2.3	Modeling Variance Using Generalized Models	
	2.3.1 Estimation of Parameters in the Variance Function	37

i

2.4	The Power of the Mean Model	43
2.5	Varying Coefficient Models and Dynamic Parameter Design	50
2.6	Binary Input, Binary Output Dynamic Parameter Design Problem	57
2.7	Modeling Misclassification Probabilities Using Generalized	
	Additive Models	59
Chapter	3	
Random	Field Linear Model	62
3.1	Introduction	62
3.2	The Model	64
3.3	Prediction	65
3.4	Bayes Predictor	68
3.5	Estimation of Parameters	70
3.6	Choice of the Mean Function and the Correlation Function	71
3.7	Estimation of Main Effects and Interaction Effects	74
3.8	Assessing Prediction Accuracy	76
3.9	Robustness Studies University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk	77
Chapter	4	
Maximu	m Likelihood Estimation of RFLM Parameters	79
4.1	Maximum Likelihood Estimation	79
4.2	Screening	83
Chapter	5	
Experim	ental Design	86
5.1	Introduction	86
5.2	Experimental Design for Quality Improvement	88
5.3	Designs for Response Surface Methodology	90
	5.3.1 Fractional Factorial Designs	91
	5.3.2 Designs for Building Response Surfaces	96
	5.3.3 Composite Designs	100
5.4	Split-Plot Designs	108

1

j,

6

ü

5.5	Experimental Designs for Computer Experiments		
	5.5.1	Latin Hypercube Sampling (LHS)	118
	5.5.2	Latin Hypercube Sampling and Monte Carlo Integration	120
	5.5.3	Variance Decomposition Under LHS	123
	5.5.4	Controlling Correlation in the Columns of LHS	125
5.6	5.6 Optimal Designs for Random Field Linear Models		126

Chapter 6

Case St	udy, Circuit Design Optimization	129
6.1	6.1 Introduction	
6.2	Model Fitting	133
6.3	Optimization of Circuit Performance	135
	6.3.1 Visualization of Factor Effects	135
	6.3.2 Optimizing Loss Statistic Via the Fitted Model	137
6.4	Circuit Example	139
6.5	Application of Optimization Algorithm for Engineering	
	Design Optimization University of Moratuwa, Sri Lanka,	
6.6	Discussion Belectronic Theses & Dissertations	173
	6.6.1 Design Optimization	173
	6.6.2 Best Linear Unbiased Predictor	176
6.7	Conclusions	178

Chapter 7

×

Incorporating Prior Information with RFLM		179
7.1	Introduction	179
7.2	Classical Kriging Predictor	180
7.3	Bayesian Prediction	181
7.4	Estimation of Prior Mean and Prior Variance of β	183
7.5	Comparison of the Performances of the Classical Predictor	
	with Bayesian Predictor	183

7.6	Integr	Integrated Circuit Design		
	7.6.1	Data	184	
	7.6.2	Predictions with Classical Kriging Predictor	184	
	7.6.3	Bayesian Prediction	203	
7.7	7 Discussion		207	

Chapter 8

Conclusions and Further Research.

218

Appendix

Matlab Programs

Bibliography

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table 6.1	Nominal and Tolerance Levels	141
Table 6.2	Experimental design for the circuit example	144
Table 6.3	Values of log-likelihood for $p = 2$	145
Table 6.4	Main effects of factors	150
Table 6.5	Estimated variances	150
Table 6.6	Factors and ranges for the noise array	167
Table 6.7	Factors and ranges for the control array	168
Table 6.8	One set of settings of design parameters in control and	
	noise arrays	169
Table 6.9	Estimated responsesersity of Moraluwa, Sri Lanka,	170
Table 7.1	Main effects of factors estimated using the predictor	
	obtained from the combined sample	193
Table 7.2	Estimated variance:s	193
Table 7.3	Estimated main effects	194
Table 7.4	Prediction performance of the classical kriging predictor	
	with-the two subsets	195
Table 7.5	Coverage probabilities for the predictors from the two	
	subsets	195
Table 7.6 I	Posterior mean and variance of β for the two subsets	203
Table 7.7	Mean square error of prediction (MSEP) for the two	
	Bayesian predictors	206
Table 7.8	Coverage probabilities for the two Bayesian predictors	206

T

LIST OF FIGURES

Fig.	1.1	Main steps of the robust parameter design	9
Fig.	1.2	Elements involved in robust parameter design	10
Fig.	5.1	A 3 ⁴⁻² fractional factorial design	98
Fig.	6.1	Circuit	140
Fig.	6.2	Two-dimensional projection of the experimental design	143
Fig.	6.3	Log likelihood vs theta	146
Fig.	6.4	Scatter plot - predicted vs observed	147
Fig.	6.5	Q-Q plot of standardized residuals against standard	
		normal quantiles	149
Fig.	6.6 - 6.15	Main effect plots	151-160
Fig.	6.16	Joint effect of R10 and R3 Dissertations	162
Fig,	6.17	Joint effect of C2 and C3	163
Fig.	6.18	Response surface of C2 and C3	164
Fig.	6.19	Response vs design number after first iteration	171
Fig.	6.20	Response vs design number after second iteration	172
Fig.	7.1	Log likelihood vs theta for combined sample	185
Fig.	7.2	Log likelihood vs theta for subsets (a) and (b)	186
Fig.	7.3 - 7.8	Main effect plots for combined sample and subset (b)	187-192
Fig.	7.9 - 7.12	Joint effect plots using predictor from subset (b)	196-199
Fig.	7.13 - 7.15	Surface plots using classical predictor obtained from	
•		subsct (b)	200-202

Fig.	7.16	Scatter plot of predicted vs observed responses for	
		classical predictor obtained from subset (b)	204
Fig.	7.17	Scatter plot of predicted vs observed responses with	
		Bayes predictor obtained from subset (b)	205
Fig.	7.18	Main effect plots with classical Kriging predictor	
		obtained from subset (b).	208
Fig.	7.19	Main effect plots with Bayesian predictor obtained	
		from subset (b)	209
Fig.	7.20 - 7.22	Joint effect plots with Bayesian predictior obtained	
		from subset (b)	210-212
Fig.	7.23 - 7.26	Surface plots of joint effect with Bayesian predictor	
		obtained from subset (b)	213-216

7

9

6

-

-

.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

KEY TO ABBREVIATIONS

- ANOVA Analysis of Variance
- BLUP Best Linear Unbiased Predictor
- CMR Composite Mixed Resolution
- GAM Generalized Additive Model
- GLM Generalized Linear Model
- IWLS Iterated Weighted Least Squares
- LHS Latin Hypercube Sampling
- LM Loss Method
- LSK León, Shoemaker and Kacker
- MMSE Maximum Mean Squared Error
- MPNLE Maximum Pseudo Normal Likelihood Estimator
- MSE Mean Squared Error
- PerMIA Performance Measurer Independent of Adjustment Factors
- PNL Pseudo Normal Likelihood
- RFLM Random Field Linear Model
- RSM Response Surface Methodology
- SN Signal Noise
- SRS Simple Random Sample

ACKNOWLEDGEMENTS

pleasure to express my deep gratitude to It is a great my Professor P.D. Gunatilake, University of Moratuwa and supervisors Dayananda, University of Sri Jayewardenepura, for the Professor R.A. rendered for the successful completion support of the guidance and research work.

My sincere thanks also are due to Dr. S. Sivaloganathan, University of Brunel for suggesting a topic in an interesting field of research and the support given.

My thanks are also due to staff of Department of Mathematics and Department of Electronic and Telecommunication Engineering for their willing help and co-operation given to me in this study.

ABSTRACT

The quality revolution of the late 80's and 90's led to researches in quality improvement in product and process designs. Taguchi's methodology for quality improvement called robust parameter design gained the interest of practitioners working in industry in quality improvement. Several approaches proposed as alternative to Taguchi's method embraced the important aspects of parameter design and this resulted in a collection of alternatives to Taguchi approach. Some of these alternatives highlighted the use of response surface methodology for quality improvement in engineering designs.

12

Computer simulation modeling is an important part of engineering design. Running simulators to obtain observations for analysis are very often expensive. Some designs may require several simulator runs to find the appropriate settings of the design parameters. So statistical models are used as surrogates of the computer simulation models for analysis and design optimization. In robust engineering design, the parameter settings of the engineering designs are sought, so that the designed product will be insensitive to the effects of noise factors such as statistical fluctuations in the design parameters or external noise factors such as temperature, humidity that may affect a product's performance.

The modeling approach used in this thesis, models the response from the computer simulation model using the Random Field Linear Model. This model is a multi-dimensional spatial **linear** model with structure in the covariance

.x

function. The predictor is used for further statistical analysis. The fitting of this model involves the estimation of covariance parameters. The methods of estimation of model parameters and model building are also described. It is also shown that for particular values of the correlation parameters, the model approximates to a multinomial model in the predictor variables.

Latin hypercube sampling design is used for sampling design points for model building and for exploratory data analysis. This design is easy to generate and is found to be useful in multi-level, multi-factor experiments. The LHS designs have better statistical properties for estimation of main effects, interaction effects than simple random sampling designs.

The use of Random Field Linear Model and Latin Hypercube Sampling for modeling and analysis in robust parameter design is illustrated with observations from circuit simulation models. The effect of using prior information on the mean with RFLM is also investigated.