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ABSTRACT 

The quality revolution of the late 80's and 90's led to researches in 

quality improvement in product and process designs. Taguchi's methodology for 

quality improvement called robust parameter design gained the interest of 

practitioners working in industry in quality improvement. Several approaches 

proposed as alternative to Taguchi's method embraced the important aspects of 

parameter design and this resulted in a collection of alternatives to Taguchi 

approach. Some of these alternatives highlighted the use of response surface 

methodology for quality improvement in engineering designs. 

Computer simulation modeling is an important part of engineering design. 

Running simulators to obtain observations for analysis are very often expensive. 

Some designs may require several simulator runs to find the appropriate settings 

of the design parameters. So statistical models are used as surrogates of the 

computer simulation models for analysis and design optimization. In robust 

engineering design, the parameter settings of the engineering designs are sought, 

so that the designed product will be insensitive to the effects of noise factors 

such as statistical fluctuations in the design parameters or external noise factors 

such as temperature, humidity that may affect a product's performance. 

The modeling approach used in this thesis, models the response from the 

computer simulation model using the Random Field Linear Model. This model 

is a multi-dimensional spatial linear model with structure in the covariance 



function. The predictor is used for further statistical analysis. The fitting of 

this model involves the estimation of covariance parameters. The methods of 

estimation of model parameters and model building are also described. It is 

also shown that for particular values of the correlation parameters, the model 

approximates to a multinomial model in the predictor variables. 

Latin hypercube sampling design is used for sampling design points for 

model building and for exploratory data analysis. This design is easy to 

generate and is found to be useful in multi-level, multi-factor experiments. The 

LHS designs have better statistical properties for estimation of main effects, 

interaction effects than simple random sampling designs. 

The use of Random Field Linear Model and Latin Hypercube Sampling 

for modeling and analysis in robust parameter design is illustrated with 

observations from circuit simulation models. The effect of using prior information 

on the mean with RFLM is also investigated. 
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