Analysis on Energy Efficiency and Optimality of LED and Photovoltaic Based Street Lighting System

Master of Science Dissertation

C. S. Kulasooriyage

Department of Electrical Engineering University of Moratuwa, Sri Lanka

April 2013

Analysis on Energy Efficiency and Optimality of LED and Photovoltaic Based Street Lighting System

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa In partial fulfillment of the requirement for the Degree of Master of Science

Chandana Shantha Kulasooriyage

Supervised by: Dr. Satish Namasivayam Prof. Lanka Udawatta

Department of Electrical Engineering University of Moratuwa, Sri Lanka

April 2013

Declaration

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

C. S. Kulasooriyage

18.04.2013

I/We endorse the declaration by the candidate.

Dr. Satish S. Namasivayam

ACKNOWLEDGEMENT

First and foremost, I am most grateful to my research supervisors Dr. Satish Namasivayam and Prof. Lanka Udawatta of Dept. of Electrical Engineering, University of Moratuwa who guided me the research work presented this thesis with much dedication and encouragement. I specially pay my gratitude towards Dr. Satish Namasivayam for his very valuable and direct guidance on the work described in the thesis and handling the tedious work of correcting and evaluating the report. His guidance and insight is immeasurable.

This research would not have been possible if not for a generous research grant made by the Senate Research Committee and my sincere thank should go to all faculty members of Post Graduate Division in Electrical Engineering Dept. who gave their fullest support for the timely completion of the research work and thesis.

I express my deepest gratitude to Eng. Nihal Wickramasooriya, General Manager (CEB) and Eng. G. Samaraweera Banda, former Deputy General Manager – CEB in Sabaragamuwa Province for their assistance towards field work of street lamp census conducted in 2010 and their guidance, support for successful completion of this research.

Last but not least, I would like to express my deepest gratitude and love to my wife, Thusitha and my kids, Sandali, Ravindu and Tharushi. Your love, invaluable support, response and patience helped me to reach this target under strenuous circumstances.

Page No

3

Ackn	nowledgment	i
Conte	ents	ii
List c	of figures	V
List of table		vii
Executive summery		viii
Chap	oter 1.	
INT	RODUCTION	
1.1	Importance of street lighting	1
1.2	Motivation	2

1.5	Outline of the Report

Chapter 2.

LIGHTING BASICS AND TECHNOLOGIES BEHIND STREET LIGHTING		
2.1	Introduction University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	5
2.2	Basic parameters of lighting	5
2.2.1	Luminous flux	6
2.2.2	Luminous intensity	6
2.3	Environmental issues	7
2.3.1	Green house gases	7
2.3.2	Mercury	7
2.3.3	Light pollution	8
2.4	Available street lamps in Sri Lanka	9
2.4.1	Incandescent lamp	9
2.4.2	Compact Fluorescent Lamp	10
2.4.3	Mercury vapour lamp	11
2.4.4	High pressure Sodium vapour lamp	12
2.5	Solar resource assessment of Sri Lanka	13
2.6	Solar powered street lighting system	14
2.7	Energy efficient street lamps	16
2.7.1	Electrode less induction lighting	16
2.8.2	LED street lamp technology	17
2.9	Haitz's law	18

Chapter 3.

METHODOLOGY

3.1	Methodology	20
3.2	Deliberation of street lighting technologies by case studies	20
3.3	Verification of luminance measurements by computer simulation tools	21
3.4	Economic analysis of existing street lamp alternatives	21
3.4.1	Life-Cycle Analysis	22
3.4.2	Life-Cycle Cost Analysis (LCCA)	22
3.4.3	Variable impacting LCCA	22
3.5	Net Present Value calculation	25
3.6	Sensitivity analysis	26

Chapter 4.

CASE STUDIES

4.1	Case study 1	27
4.1.1	Ceylon Electricity Board	27
4.1.2	Annual electricity consumption in Sri Lanka	29
4.1.3	Overview of the case study	30
4.1.4	Street lamp census	31
4.1.5	Results (O) Electronic Theses & Dissertations	32
4.2	Case study 2	37
4.2.1	Overview of case study 2	37
4.2.2	Galle road improvement project	37
4.2.3	Results	40
4.2.4	Calculations	41
4.3	Case study 3	43
4.3.1	Energy conservation by proper street lighting control system	43
4.3.2	Street lamp automation system in Balangoda town area	44

Chapter 5.

STREET LIGHTING DESIGN

5.1	Street lighting design using computer simulation method	48
5.2	Lighting Reality Pro software	49
5.3	Concepts of street lighting design	50
5.4	Street Lighting metrics	53
5.5	Street lighting calculations using Lighting Reality software	54
5.5.1	Computer simulation for 250W High Pressure Sodium Vapour lamp	55
5.5.2	Computer simulation for LED lamp	57
5.5.3	Summery of the computer simulation	59

Chapter 6.

ECONOMIC ANALYSIS

6.1	Economic analysis	61
6.2	Cost assumptions	61
6.2.1	Energy cost	62
6.2.2	Existing lamp maintenance cost	62
6.2.3	LED maintenance cost	64
6.3	Economics in case studies	66
6.4	Sensitivity analysis	70
6.4.1	Sensitivity analysis on the in – service period of LED	70
6.4.2	Sensitivity analysis on the lamp fixture cost of LED	71
6.4.3	Sensitivity analysis on the initial efficacy of LED	72
6.4.4	Sensitivity analysis on the maintenance cost of LED	72
6.5	Stand alone solar powered street lighting system	73
6.5.1	Sensitivity analysis for sodium vapour replacement	76
6.6	Economics in introduction of street lighting control system	77
6.6.1	Energy conservation by partial night street lighting	79
6.7	Economic analysis of automation system in Balngoda town area	80

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

CONCLUSION AND RESULTS

Chapter 7.

7.1	Luminance calculation	83
7.2	Financial calculation	85
7.2.1	Economic evaluation	85

Chapter 8.	
DISCUSSION	90
REFERENCE	93
APPENDIX	

Page No

Figure 2.1	Basic lighting parameters	5
Figure 2.2	General lighting issues associated with street lighting	8
Figure 2.3	Incandescent lamp	9
Figure 2.4	Compact Fluorescent Lamp	10
Figure 2.5	Mercury vapour lamp	11
Figure 2.6	High Pressure Sodium Vapour Lamp	12
Figure 2.7	Solar radiation distribution through out the world	13
Figure 2.8	Solar powered street lighting system	14
Figure 2.9	Induction Lamp	16
Figure 2.10	P – N junction of Light Emitting Diode	17
Figure 2.11	Heitz's Law	18
Figure 2.12	Historical and Predicted Efficacy of Lighting Technologies	19
Figure 4.1	Distribution regions 1 & 2	28
Figure 4.2	Distribution regions 3 & 4 Cheese & Dissertations	28
Figure 4.3	Annual electricity consumption in Sri Lanka in 2010	29
Figure 4.4	Street lamp distributions among the provinces	33
Figure 4.5	Incandescent lamp distributions among provinces	34
Figure 4.6	Fluorescent lamp distributions among provinces	34
Figure 4.7	CFL distributions among provinces	35
Figure 4.8	Mercury vapour lamp distribution among provinces	35
Figure 4.9	Sodium vapour lamp distribution among provinces	36
Figure 4.10	Before and after street lamp configuration	38
Figure 4.11	Illumination measurements taken by monitoring team	39
Figure 4.12	Google map of Galle road section	39
Figure 4.13	Control and power circuit of automated street control system	46
Figure 4.14	Automated street lighting control system at Balangoda UC area	47
Figure 5.1	Street lighting model in Lighting Reality software	49
Figure 5.2	Street lighting features	52
Figure 5.3	Opposite type lamp fixture configuration of Galle road	52
Figure 5.4	Classification of light distribution patterns	53
Figure 5.5	Luminance metrics compatible for ME5 class	54

Figure 5.6	Illumination metrics compatible for CE5 class	54
Figure 5.7	Main lighting design data for 250W HPS lamp	55
Figure 5.8	Modal Layout for 250W HPS lamps having 30m spacing	56
Figure 5.9	Modal Layout for 250W HPS lamps having 57m spacing	57
Figure 5.10	Modal Layout for 111W LED lamps having 30m spacing	58
Figure 5.11	Modal Layout for 111W LED lamps having 57m spacing	59
Figure 6.1	The NPV profile for a project	68
Figure 7.1	Annual energy consumption of lamp control management system	89

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Page No

Table 3-1	Life span of street lamps	23
Table 4-1	Street lamp censes in May 2010	32
Table 4-2	Summery of illumination measurements	41
Table 4-3	Recommended BS EN 13201 values for horizontal illuminance	42
Table 4-4	Recommended BS EN 13201 values for luminance for road surface	242
Table 4-5	Street lamps connected in Balangoda UC area	45
Table 5-1	Classification of lighting classes on roads	51
Table 5-2	Comparison of results for HPS & LED – ME5 lighting class	59
Table 6-1	Annual costs of existing lamps	63
Table 6-2	Annual maintenance cost calculation of LED fixture	66
Table 6-3	Existing lamp replacement by LED	67
Table 6-4	Annual savings of the lamps	67
Table 6-5	Lamp replacement economics ses a Dissertations	69
Table 6-6	Sensitivity analysis on the in – service period	71
Table 6-7	Sensitivity analysis on the lamp fixture cost period	71
Table 6-8	Sensitivity analysis on the initial efficacy	72
Table 6-9	Sensitivity analysis on the lamp fixture cost period	73
Table 6-10	Annual savings by the stand alone solar powered street lamps	75
Table 6-11	Lamp replacement economics for stand alone system	76
Table 6-12	Sensitivity analysis on the sodium vapour lamp replacement	76
Table 6-13	Annual energy saving by photocell & timer switching	78
Table 6-14	Economics by photocell & timer switching	78
Table 6-15	Economics by programmable timer switching	79
Table 6-16	Economics for lamp automation system in Balangoda town area	80
Table 7-1	Efficacy of various street lighting technologies	82
Table 7-2	comparison of energy saving & CO2 reduction by LED	83
Table 7-3	Comparison of illumination (lux) measurement [ME5 Road class]	84
Table 7-4	Lamp replacement economics	86
Table 7-5	Sensitivity analysis of CFL replacement by LED	87
Table 7-6	Energy saving by different modes of controlling in street lamps	89

EXECUTIVE SUMMERY

This research evaluates what is the most suitable energy efficient street lighting system for Sri Lanka as a part of energy conservation which can be taken as a highly relevant topic nowadays. This research is based on the detailed review of street lamps operated in the country. The said review was mainly carried out through a comprehensive street lamp census conducted in all over the country in between late February 2010 and mid May 2010.

Several lamp technologies are presently used for street lighting; however, Light Emitting Diodes (LEDs) are becoming increasingly competitive with established technologies due to their rapidly increasing efficiencies and decreasing cost. The research assessed the LED fixtures which have a capability of significant energy savings potential achieving from 50% to 70% energy savings compared to the existing street lamps that are the best option for replacement of existing lamps. Stand-alone solar powered LED system and the street lighting control methods were also discussed and evaluated to verify the optimum outcome. Mainly, lighting design and comparison have been taken into account along Bambalapitiya – Kollupitiya Galle road section with Sodium Vapour Lamps and LED by actual field measurements and Lighting Reality, simulation software to evaluate better street lighting options. This study found that the LEDs with photocell or timer controlling methods delivered both significant energy savings and equivalent or improved lighting performance relative to the existing lamps.

The potential for energy savings from LED street lights is very large. It was estimated by economic evaluation that 155 GWh of energy was used by existing street lighting in Sri Lanka in year 2010. This study reveals that the current energy consumption would be reduced by over 1/3 using LED replacement to the existing lamps. As LED technology advances and efficacies improve as demonstrated by "Haitz's Law", these savings will likely more improve as well.

The overall savings potential which will be made by conversion of existing lamps by LED, is likely to further increase in the future as the energy and lighting performance. Even though solar power systems need high capital expenditure, it will be one of the most appropriate energy solutions for the country like Sri Lanka. However, LED technology is unfamiliar to our country and not readily available for mass deployment; limitations continue to exist in the lighting performance of some. Additionally, economic viability, though subject to location details, will remain a key factor that must be weighed in concert with lighting performance. Incentive program development by the government may further encourage LED street lamp and solar powered system development adoptions. This research recommends that any such incentive programs include performance standards that consider warranty, efficacy, light distribution, and other important criteria.