

1

18, MON 183 101.

Ø

CALCULATIONS ON FACE AND VERTEX REGULAR POLYHEDRA AND APPLICATION TO FINITE ELEMENT ANALYSIS

U. C. JAYATILAKE

This thesis was submitted to the Department of Mathematics of the University of Moratuwa in partial fulfillment of the requirements for the degree of M.Sc by research

University of Moratuwa

51 06

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MORATUWA SRI LANKA

APRIL 2006

i

85384

DECLARATION

Work included in this thesis in part or whole, has not been submitted for any other academic qualification at any institution

UOM Verified Signature

U , (U. C. Jayatilake)

~

Certified by

UOM Verified Signature

(Prof. G. T. F. de Silva, Supervisor)

ii

ACKNOLEDGEMENT

This is a result of a subject I developed for the last eight years. I introduced the word "Face and Vertex Regular Polyhedra" and I was able to publish a paper in Mathematical Gazette in March 2005, on the topic "Calculations on Face and Vertex Regular Polyhedra". Many people helped and encouraged me during the past years. Firstly I would like to thank my supervisors Prof.G.T.F. de Silva and Prof.M.Indralingam for their valuable advice. I would also like to thank all my friends and teachers who encouraged me during that time. My special thanks goes to Mr. Hema Nalin Karunarathne who gave me the chance to display my findings in 9.05 Rupavahini program in 1999. I would like to thank Prof. G.T.F. de Silva again for organizing a departmental seminar to present my findings to the staff of the Department of Mathematics, university of Moratuwa in 2001.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

iii

TABLE OF CONTENTS

Title Page	i
Declaration	ii
Acknowledgement	iii
Table of Contents	iv
List of Symbols	vii
List of Figures	viii
List of Tables	xi
Abstract	xii

CHAPTER 1 : Tessellations and Polyhedra	1
Introduction	1
1.1 Regular Polygons	2
1.2 2D Tessellations	2
1.2.1 Regular 2D Tessellations	2
1.2.2 Semi-Regular 2D Tessellations was Sri Lanka	4
1.3 Face and Vertex Regular Polyhedra	8
1.3.1 Regular Polyhedra(Platonic Solids)	8
1.3.2 Archimedean Polyhedra	11
1.3.3 Regular Prisms	17
1.3.4 Regular Anti Prisms	18
1.4 3D Tessellations	18
1.4.1 Regular 3D Tessellations	19
1.4.2 Regular Prism 3D Tessellations	20
1.4.3 Semi-Regular 3D Tessellations	21
1.4.4 Semi-Regular Prism 3D Tessellations	26

CHAPTER 2 : Calculations on Face and Vertex Regular Polyhedra	27
Introduction	27
2.1 Escribed Radius of a Face and Vertex Regular Polyhedron	28
2.2 Computation of Escribed Radius	31

CHAPTER 3 : Other Derivations	39
Introduction	39
3.1 Sphere as a Limiting Case of a Polyhedron	40
3.2 Other Formulae	42
3.3 Numerical Data	45
3.3.1 General Data	45
3.3.2 Data Calculated form Derived Equations	48
CHAPTER 4 : Application to Finite Element Analysis	51
Introduction	51
4.1 Finite Difference and Finite Element Methods	52
4.2 Finite Element Methods	52
4.3 Weighted Residual Methods	53
4.3.1 Least Square Method	54
4.3.2 Galerkin Method University of Morshuwa, Sri Lanka.	54
4.4 Variational Methods Sectoric Theses & Dissertations	54
4.4.1 Ritz Method	54
4.5 Use of Regular Tessellations in Finite Elements	55
4.6 Choosing Lagrange Polynomial of More Than One Variable	56
4.7 Finite Element Analysis in 2D	56
4.7.1 Possible Regular 2D Tessellations	56
4.7.2 2D Tessellations in Finite Elements	58
4.7.3 Regular 2D Tessellations in Finite Elements	59
4.7.4 Limitations of Regular Polygons as Finite Elements	60
4.7.5 Proof of a General Result	63
4.7.6 Conclusion	64
4.7.7 Deductions	65
4.8 Finite Element Analysis in 3D	65
4.8.1 Possible Regular 3D Tessellations	65
4.8.2 Dihedral Angles of Truncated Octahedron	71
4.8.3 3D Tessellations in Finite Elements	72
4.8.4 Regular 3D Tessellations in Finite Elements	74

4.8.5 Limitations of Face and Vertex Regular Polyhedra as	
Finite Elements	76
4.8.6 Proof of a General Result	85
4.8.7 Conclusion	85
4.8.8 Deductions	85
CHAPTER 5 : Conclusions and Recommendations	87
Conclusions	88
Recommendations	89
References	90
APPENDIX	91
Appendix A-Proof of the Sin Formula in Spherical Trigonometry	92
Appendix B-Solution of the Cubic Equation	93
Appendix C-Solid Angle of a Vertex, of Morniuwa, Sri Lanka.	94
Appendix D-Dihedral Angle	95
Appendix E-Faces, Vertices and Edges	96

LIST OF SYMBOLS

- A_a -structure formed by bringing together a number of objects of type A
- $A_a B_b \dots$ -structure formed by bringing together *a* number of objects of type *A*,
 - b number of objects of type B,

 n_i -number of sides of the i th type polygon or the polygon of n_i number of sides

 r_i -radius of the escribed circle radius of ith type polygon

 M_i -number of i th type polygons meet at a vertex

 R_i -radius of the escribed sphere radius of i th type polygon

R - radius of the escribed sphere radius of polyhedra

- k -constant of the polyhedon
- *a* -length of an edge
- ${\cal F}$ -number of faces
- *E*-number of edges
- V -number of vertices

2D-two dimensional

3D- three dimensional

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

V(x, y)-two variable Lagrange polynomial

V(x, y, z)-three variable Lagrange polynomial

 ${}^{n}C_{r}$ -number of non repetitive combinations of *n* objects with *r* at a time

" H_r -number of repetitive combinations of *n* objects with *r* at a time

 B^{-1} -shape matrix

P-coordinate set of nodes with respect to X, Y coordinates

P'-coordinate set of nodes with respect to x, y coordinates

f(X,Y) -raw vector of terms of the piecewise polynomial of two variables

f(P) -matrix formed by substituting coordinate set of nodes to the terms of the piecewise polynomial

A -column vector of coefficients

LIST OF FIGURES

1.1: 3 ₆	2
1.2: 4 ₄	3
1.3: 6 ₃	3
1.4: $3_2 6_2$	4
1.5: 3 ₃ 4 ₂	4
1.6: $3_2 4_1 3_1 4_1(R)$	5
1.7: $3_1 4_2 6_1$	5
1.8: 3 ₁ 12 ₂	6
1.9: 4 ₁ 6 ₁ 12 ₁	6
1.10: 4 ₁ 8 ₂	7
1.11: $3_4 6_1(R)$	7
1.12: 3_3 – Tetrahedron	8
1.13: 4_3 – Hexahedron(Cube)	9
1.14: 5 ₃ – Dodecahedron	9
1.15: 3 ₄ – Octahedron	10
1.16: 3 ₅ – <i>Icosahedron</i>	10
1.17: 3_16_2 – Truncated Tetrahedron	11
1.18: 3_18_2 – Truncated Cube	11
1.19: 3 ₁ 10 ₂ – <i>Truncated Dodecahedron</i>	12
1.20: 4 ₁ 6 ₂ – Truncated Octahedron	12
1.21: 5 ₁ 6 ₂ – Truncated Icosahedron	13
1.22: 4 ₁ 6 ₁ 8 ₁ – Great Rhombicuboctahedron	13
1.23: 4 ₁ 6 ₁ 10 ₁ – Great Rhombicosidodecahedron	14
1.24: 3 ₁ 4 ₃ – Small Rhombicuboctahedron	14
1.25: 3_24_2 – Cuboctahedron	15
1.26: 3_25_2 – <i>Icosidodecahedron</i>	15
1.27: $3_14_25_1$ – Small Rhombicosidodecahedron	16
1.28: $3_4 4_1(L)$	16

1.29: $3_4 5_1(R)$	17
1.30: 6 ₁ 4 ₂	17
$1.31: 6_13_3$	18
$1.32: (4_3)_8$	19
1.33: $(4_16_2)_4$	19
1.34: $(3_14_2)_{12}$	20
1.35: $(6_1 4_2)_6$	20
1.36: $(3_3)_8(3_4)_6$	21
1.37: $(3_3)_2(3_16_2)_6$	21
1.38: $(3_4)_1(3_18_2)_4$	22
1.39: $(3_4)_2(3_24_2)_4$	22
1.40: $(4_3)_1(4_16_2)_1(4_16_18_1)_2$	23
1.41: $(3_16_2)_1(3_18_2)_1(4_16_18_1)_2$	23
1.42: $(4_3)_2(3_24_2)_1(3_14_3)_2$	24
1.43: $(3_3)_1(4_3)_1(3_14_3)_3$ University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	24
1.44: $(3_16_2)_2(3_24_2)_1(4_16_2)_2$ www.lib.mrt.ac.lk	25
1.45: $(4_2 8_1)_2 (4_1 6_1 8_1)_2$	25
1.46: $(4_3)_1(4_28_1)_2(3_18_2)_1(3_14_3)_1$	26
2.1: Regular Polygon	28
2.2: Spherical Triangle in the Sphere	28
2.3: Spherical Triangle	28
2.4: Triangle BGO	29
2.5: Triangle ABG	29
4.1: Approximating Boundary by Finite elements	55
4.2: 3 ₆	57
4.3: 4,	57
4.4: 6,	58
4.5: Equilateral Triangle	59

Ŷ

4.6: Square	59
4.7: Regular Hexagon	60
4.8: Equilateral Triangle-Non Singular Matrix	60
4.9: Square-Non Singular Matrix	61
4.10: Square-Singular Matrix	61
4.11: Regular Hexagon-Singular Matrix	62
4.12: $(3_14_2)_{12}$	67
4.13: $(4_3)_8$	68
4.14: $(6_14_2)_6$	69
4.15: $(4_16_2)_4$	71
4.16: 3 ₁ 4 ₂	74
4.17: 4 ₃	74
4.18: 4 ₂ 6 ₁	75
4.19: 4 ₁ 6 ₂	75
4.20: 3 ₁ 4 ₂ -Non Singular Matrix	76
4.21: 3 ₁ 4 ₂ -Singular Matrix	77
4.22: 3 ₁ 4 ₂ -Singular Matrix2	77
4.23: 4 ₃ -Non Singular Matrix	78
4.24: 4 ₃ -Singular Matrix	79
4.25: 4 ₂ 6 ₁ -Singular Matrix	80
4.26: 4 ₁ 6 ₂ -Singular Matrix	82
4.27: 4 ₁ 6 ₂ -Singular Matrix2	84
A.1: Sine Formula	92
A.2: Spherical Triangle on Plane	93
C.1: Solid Angle of a Vertex	94
D.1: Dihedral Angle	95

14

LIST OF TABLES

3.1: General Data	47
3.2: Data Calculate From Derived Equations	50
4.1: Two Variable Polynomials	59
4.2: Three Variable Polynomials	73

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Polyhedron is a solid figure bounded by plane faces. Face and vertex regular polyhedra are the polyhedra whose faces are regular polygons and the arrangement of polygons around each vertex is identical. Here general equations to calculate the properties of the face and vertex regular polyhedra are developed. This includes equations for radius of the escribed sphere and internal solid angle of a vertex. Using these equations the radius of the escribed sphere of face and vertex regular polyhedrda are found including that of Snub Cube and Snub Dodecahedron. It is also shown that sphere is a limiting case of a polyhedron.

As application to finite element analysis, approximating the boundary by the sides of the finite elements is proposed. Also a method of defining the Lagrange interpolating polynomial is proposed. 2D tessellations are filling of infinite plane using polygons and 3D tessellations are filling of infinite space using polyhedra. With the piecewise polynomial selected in the above manner it is shown that the only possible regular tessellations that can be used in finite elements are Equilateral Triangle and Square in 2D and Triangular Regular Prism and Cube in 3D. It is shown in general that "any polygon having two axis of symmetry with nodes are selected at vertices cannot be used as a finite element if its Lagrange polynomial contains the complete polynomial of degree two" and "any polyhedron having a polygonal face with two axis of symmetry and having six or more number of vertices with the nodes are selected at vertices cannot be used as a finite element if its Lagrange polynomial contains a two variable complete polynomial of degree two".