GROUND IMPROVEMENT METHODS
A CASE STUDY OF HEAVY TAMING AND COMPACT VACUUM CONSOLIDATION

MASTER OF BUSINESS ADMINISTRATION
IN

PROJECT MANAGEMENT

K.D.H.N. Katugampala
Department of Civil Engineering
University of Moratuwa
May 2012
GROUND IMPROVEMENT METHODS
: A CASE STUDY OF HEAVY TAMPING AND COMPACT VACUUM CONSOLIDATION

BY

K.D.H.N. Katugampala

Supervised by

Prof. S.A.S. Kulathilaka

The Dissertation was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Business Administration.

Department of Civil Engineering

University of Moratuwa

May 2012
DECLARATION

I confirm that, except where indicated through the proper use of citations and references, this is my own original work. I confirm that, subject to final approval by the Board of Examiners of University of Moratuwa, a copy of this Dissertation may be placed upon the shelves of the library of the University of Moratuwa and may be circulated as required.

K.D.H.N. Katugampala Date
MBA/PM/08/9771

To best of my knowledge the above particulars are correct.

Prof. S.A.S. Kulathilaka (Supervisor) Date
Department of Civil Engineering,
University of Moratuwa.

Approved by the examination committee:

MBA in PM, Department of Civil Engineering,
University of Moratuwa,
Sri Lanka.
April 2012.
ABSTRACT

The qualitative ground improvement against the cost efficiency is widely discussed topic in the construction industry. Since the inception of Southern Transport Development project (STDP) in Sri Lanka in 2003 many ground improvement applications have implemented along the highway trace form Colombo to Mathara. The core aspects of ground improvement are cost, quality and process duration of the application, which determined the success of the construction. Consequently, the ground improvement techniques need to be defined that the most appropriated application for a particular site conditions.

The first objective of this research was to evaluate complete cost analysis for Heavy Tamping (HT) method application in STDP. Then the second objective was carried out complete cost analysis for Compact Vacuum Consolidation (CVC) method as an alternative ground improvement technique to the HT. Finally compare the both methods financial aspects, process duration and quality as well as established recommendation for selecting alternative technique by analyzing the key performance indexes.

Research does consider specific site conditions which both methods are applicable to improve the existing ground and the comparison limit where the sites have similar range of ground properties.

Research was carried out through data collection and normalization of a trial application in STDP and the cost estimation done according to the Bottoms-up technique. The methods comparison was done by considering five main out lines: time consumption, technology requirements, labor intensity, machine intensity and total cost. These factors are determined which method is most appropriate to the ground improvement.

Overall research findings evidenced that the CVC method has similar cost with respect to the HT method. When compare the other key factors, the HT method has less time, labor and technology requirement than the CVC but it is higher machinery intensive. It can be stated two major recommendations for selecting ground improvement technique; first is carried out feasibility study for listing out suitable techniques and the second is compare the key performance indexes of that.
ACKNOWLEDGEMENT

It is my pleasure to express my sincere gratitude to the University of Moratuwa, Department of Civil Engineering for giving me this opportunity to do a practical evaluation and study which were more interesting and valuable experience.

I deeply appreciate Prof. S.A.S. Kulathilaka my supervisor, Department of Civil Engineering, University of Moratuwa, for his continuous support and guidance rendered during the period of this dissertation.

Then my special thanks to Prof. A.A.D.A.J. Perera, Dr. L. Ekanayake and Dr. R. Halwathura from University of Moratuwa for being the initial guides who took me in correct direction and helped me through the entire process whenever I needed some help of guidance.

Also I would like to remember with respect China Harbour Engineering Company (Group) and Taisei Cooperation - Southern Transport Development Project and their staffs for giving more accurate data.

Next I would like to express my sincere thanks to:

All the authors of the articles listed under the reference and bibliography section,
To the lecture panel and coordinators of the MBA program which encouraged my management life,
To staff at GSMB Technical Services for the support given throughout the period of MBA and research granting me necessary leave and providing support,
My parents who insisted me on MBA research works.

And finally I would like to thank the people who gave me correct information and all others helped me throughout this MBA program and research study.
TABLE OF CONTENTS

DECLARATION………………………………………………………………………… i
ABSTRACT……………………………………………………………………………… ii
ACHKONWLEDGEMENT…………………………………………………………….. iii
TABLE OF CONTENTS……………………………………………………………… iv
LIST OF TABLES……………………………………………………………………… x
LIST OF FIGURES…………………………………………………………………… xii

CHAPTER 1 - INTRODUCTION…………………………………………………… 1
 1.1 Background ……………………………………………………………………… 1
 1.2 Problem Statement ……………………………………………………. 3
 1.3 Objectives for the Research Project ………………………………… 4
 1.4 Methodology …………………………………………………………………… 4
 1.4.1 Figure of methodology ………………………………………………… 5
 1.5 Outline of the Thesis………………………………………………………….. 6

CHAPTER 2 – LITERATURE REVIEW……………………………………………… 7
 2.1 Classification of Ground Improving Techniques …………………… 7
 2.2 Method Selection for Various Improvement Requirements ……… 8
 2.3 Summary of Ground Improvement Techniques …………………… 14
 2.4 Introduction to Cost Estimation Methods …………………………….. 15
 2.4.1 Design stage ……………………………………………………………… 15
 2.4.2 Planning stage …………………………………………………………… 15
 2.4.3 Design development stage ………………………………………….…. 16
 2.4.4 Construction documents stage ………………………………………. 16
 2.5 Estimation Technique………………………………………………………… 17
 2.5.1 Bottoms-up technique……………………………………………….. 17
 2.5.2 Specific analogy technique………………………………………….. 17
 2.5.3 Parametric technique………………………………………………… 17
2.5.4 Cost review and update technique
2.5.5 Trend analysis technique
2.5.6 Expert opinion technique
2.6 Data Collection and Normalization
2.7 Direct Cost Estimation
2.8 Material Takeoff
2.9 Time Cost Analysis
2.10 Summary of Cost Estimation Methods

CHAPTER 3 – HEAVY TAMPING METHOD
3.1 Heavy Tamping Process
3.2 Subsoil Profile at Heavy Tamping Tested Area
3.3 Material Required for H.T.
3.4 Equipments required for H.T.
3.5 Method of Heavy Tamping
3.5.1 Ironing phase
3.5.2 Surcharge fill
3.6 Selection of Heavy Tamping Method
3.6.1 Cost involved activities
3.6.2 Material requirement
3.6.3 Energy Level Summary
3.7 Heavy Tamping Trial Area 17+370km to 17+430km
3.7.1 Cost of crain idling
3.7.2 Assessed rate analysis
3.7.3 Estimated cost for activities
3.7.4 Comparison of C.H. proposed and PCI assessed rates
3.7.5 Evaluate mobilization cost for trial area
3.8 Activity Analysis
3.8.1 Time consumption - site preparation and
3.8.2 Labor/ forman cost - site preparation and tamping operation 42
3.8.2.1 Site preparation .. 42
3.8.2.2 Site preparation labor/ forman cost 44
3.8.2.3 Tamping operation 45
3.8.3 Labor - Forman ratio 48
3.8.4 Site preparation analysis 49
3.8.5 Site preparation expenses 50
3.8.5.1 Machinery costs 51
3.8.5.2 80t crane - site preparation 52
3.8.6 Material cost for ground improvement 52
3.8.7 Machinery cost comparison 53
3.8.7.1 Machinery unit cost H. T. method............. 54
3.8.8 Total cost portions at trial area 55
3.9 Variables Cost of H.T Method....................... 56
3.9.1 HT and SP unit cost increment...................... 56
3.9.2 HT and SP unit cost reduction..................... 57
3.9.3 HT and SP variables inverse proportional ship...... 57
3.9.4 Total cost behaviors.................................. 58

CHAPTER 4 - COMPACT VACUUM CONSOLIDATION METHOD 59
4.1 Sub Soil Profile in Trial Embankment for CVC Method 61
4.2 Different Items Used for CVC Process 63
4.2.1 Vertical wick drain (ARPAS drain).................. 63
4.2.2 Main separation tank 64
4.2.3 Secondary separate tank 64
4.2.4 System of the ARPAS CVC method 64
4.3 Installation Procedure of CVC Method ………………. 65
4.3.1 Installation of ARPAS drain ……………………. 65
4.3.2 Installation of pipes ……………………………. 66
4.3.3 Installation the secondary separate tank and main separate tank ……………………….... 66
4.3.4 Installation of horizontal drain …………………. 66
4.3.5 Installation of protection sheet and vacuum …… 67
4.3.6 Installation of vacuum machine …………………. 68
4.4 Apparatus Needed for This System ………………… 68
4.4.1 Apparatus for installation of ARPAS drain …….. 68
4.4.2 Vacuum machine ………………………………. 68
4.4.3 Control unit ……………………………………. 69
4.5 Material Used in CVC System ……………………… 69
4.5.1 Vertical drain …………………………………….. 69
4.5.2 Horizontal drain …………………………………. 69
4.5.3 Perforated pipe …………………………………. 69
4.5.4 Vacuum sheet …………………………………… 69
4.6 Unit Price Analysis ………………………………. 70
4.6.1 Work item- geotextile sheet grid ……………… 70
4.6.2 Work item- Bran drain …………………………. 72
4.6.3 Work item- geotextile sheet woven fabric …….. 74
4.6.4 Work item- horizontal gravel mat ……………. 75
4.7 Cost Involved in Work Items - CVC Unit Block …… 76
4.8 Site Preparation Cost - Installing CVC System …... 78
4.9 Material Cost - Water Pumping System …………… 78
4.10 Operation Cost - Water Pumping System …………. 79
4.11 Unit Labor Cost for CVC Method ………………….. 80
4.12 Machinery Unit Cost - CVC Method ……………….. 81
4.13 Total Unit Cost for CVC Method............................... 81
4.14 Total Expenditure - Installing and Operating CVC System 82
4.15 Variable Cost of CVC Method.................................. 83
 4.15.1 Installation and operation unit cost upraise.............. 84
 4.15.2 Installation and operation unit cost reduction.......... 84
 4.15.3 Variables inverse proportional ship.................... 85
 4.15.4 Total cost behavior.. 86

CHAPTER 5 - METHOD COMPARISON 87
 5.1 Time Consumption ... 87
 5.2 Technology Requirement 89
 5.3 Labor Intensity .. 89
 5.4 Machinery Intensity .. 91
 5.4.1 Machinery Cost Comparison 91
 5.5 Total Cost Comparison 92

CHAPTER 6 - CONCLUSION AND RECOMMENDATIONS.... 93
 6.1 Overview.. 93
 6.2 Conclusion.. 93
 6.3 Recommendations... 94
 6.4 Areas of further research.................................. 94

REFERENCES.. 95
BIBLIOGRAPHY... 97
APPENDIX A.. 99
APPENDIX B.. 100
APPENDIX C.. 101
APPENDIX D.. 102
APPENDIX E.. 104
APPENDIX F.. 106
LIST OF TABLES

Table 2.1: Material Characteristics.. 10
Table 2.2: Rough classification of ground improvement technique......... 11
Table 2.3: Potentially applicable ground improvement methods for civil works Structures... 13
Table 2.4: Summary of ground improvement methods for remediation of large, open, undeveloped sites.................. 15
Table 2.5: Summary of ground improvement methods for remediation of construction and/or developed sites........... 17
Table 3.1: Heavy Tamping cost involved activities.. 33
Table 3.2: Soil Quantity for Heavy tamping (Platform & Craters)......... 34
Table 3.3: Tamping Area and Energy Level Summary............................ 36
Table 3.4: Adjustment to Minimum Eight Hours.................................. 38
Table 3.5: The PCI and CH Proposed Rate Comparison - Labor/ Forman 39
Table 3.6: The PCI and CH Proposed Rate Comparison – Total unit cost 40
Table 3.7: Width variation at different chain ages................................. 41
Table 3.8: Time consumption for trial and whole treated area................. 43
Table 3.9: Labor works for site preparation...................................... 45
Table 3.10: Forman working hours for site preparation......................... 46
Table 3.11: Labor works for tamping operation.................................. 48
Table 3.12: Forman works for tamping operation................................. 48
Table 3.13: Machinery hours for site preparation................................. 54
Table 3.14: Comparison of machinery usage for S.P and HT................. 56
Table 3.15: Total machinery unit area cost – HT 57
Table 3.16: Increase variable of HT and SP.. 59
Table 3.17: Decrease variable of HT and SP... 60
Table 3.18: HT increase and SP decrease variable................................ 60
Table 3.19: HT decrease and SP increase variable................................ 60
Table 4.1: Cost calculation for work item-Geotextile sheet grid............. 74
Table 4.2: Cost calculation for work item-Bran drain............................ 75
Table 4.3: Cost calculation for work item-Geotextile sheet woven fabric 76
Table 4.4: Cost calculation for work item-Horizontal gravel mat........... 78
Table 4.5: Total cost for 60m×60m block.. 80
Table 4.6: Total cost of machinery and labor hours for CVC installation 81
Table 4.7: Material cost for water pumping system............................ 82
Table 4.8: Operational cost for water pump system............................. 82
Table 4.9: Unit area labor cost for work items 83
Table 4.10: Machinery unit area cost for work items 84
Table 4.11: Increase variables of installation and operation............... 87
Table 4.12: Decrease variables of installation and operation.............. 87
Table 4.13: Increase installation and decrease operation variables....... 88
Table 4.14: decrease installation and increase operation variables..... 88
LIST OF FIGURES

Figure 1.1: Methodology flow chart……………………………………… 5
Figure 2.1: Applicable grain size ranges for soil improvement methods. 12
Figure 3.1: Compaction of peat using heavy tamping method &
construction of embankment flow chart……………………………… 25
Figure 3.2: Subsoil profile at heavy tamping tested area ………………… 26
Figure 3.3: A section of heavy tamping setting out plan ……………….. 29
Figure 3.4: Plan view of trial location ………………………………… 31
Figure 3.5: Section A-A at trial location ……………………………… 31
Figure 3.6: Section B-B at trial location ………………………………… 32
Figure 3.7: Applied energy variation with area………………………. 37
Figure 3.8: Assessed cost for preparation activities…………………… 39
Figure 3.9: Width variation along the highway trace…………………… 42
Figure 3.10: Time consumption of SP and HT operation……………… 44
Figure 3.11: Time consumption for tamping operation with total working days 45
Figure 3.12: Site preparation labor work for whole treated area………. 46
Figure 3.13: Site preparation Forman work for whole treated area…… 47
Figure 3.14: Tamping operation labor work for whole treated area…… 49
Figure 3.15: Tamping operation Forman hours for whole treated area… 50
Figure 3.16: Use of labor hours for whole treated area…………………. 50
Figure 3.17: Use of Forman hours – SP vs. TO………………………… 51
Figure 3.18: Labor Forman ratio for site preparation
Figure 3.19: Labor Forman ratio for tamping operation
Figure 3.20: Site preparation progress
Figure 3.21: Comparison progress of S.P. and H.T.
Figure 3.22: Machinery cost comparison – S.P. vs. HT
Figure 3.23: Total cost portions for trial area – SP vs. T.O.
Figure 3.24: Total cost behavior on variables
Figure 4.1: The apparatus for conventional vacuum consolidation
Figure 4.2: The apparatus for compact vacuum consolidation
Figure 4.3: CVC method configuration
Figure 4.4: Subsoil profile of CVC method applied area
Figure 4.5: Vertical Wick Drain (ARPAS drain)
Figure 4.6: Air water separation
Figure 4.7: Vertical Drain Installation
Figure 4.8: Installation of Horizontal drains perforated pipes and pumps
Figure 4.9: Installation of protection sheet
Figure 4.10: Main vacuum pump unit and Water discharge during vacuuming
Figure 4.11: Total unit cost portions for CVC activities
Figure 4.12: Total cost comparison – installation vs. operation
Figure 4.13: Total cost behavior on variables
Figure 5.1: Time consumption for unit area – HT vs. CVC
Figure 5.2: Labor cost comparison for unit area – HT vs. CVC
Figure 5.3: Machinery cost comparison for unit area – HT vs. CVC…… 94

Figure 5.4: Total cost comparison for unit area – HT vs. CVC……… 95