## STUDY OF WATER TOWERS

# THIS THESIS IS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING IN STRUCTURAL ENGINEERING DESIGN 

## By

Jeyaranie Sivakumar

## LIBRARY

UNIVERSITY OF MORATUWA. SRI LANKA moratuwa
www libmrtaclk

Supervised By
Dr. (Mrs.) M.T.P. Hettiarachchi
Senior Lecturer

$$
\frac{624^{.0} .07^{4}}{6.04 .01(043)}
$$

Department of Civil Engineering


## DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF MORATUWA
SRI LANKA

## SEPTEMBER 2007

# STUDY OF WATER TOWERS 

By Eng. (Mrs.) Jeyaranie Sivakumar


#### Abstract

University of Moratuwa, Sri Lanka. This thesis is submitted to the Department of Civil Engineering of the University of Moratuwa, Sri Lanka, in partial fulfillment of the requirement of the Degree of Master of Engineering in Structural Engineering Design.


Department of Civil Engineering University of Moratuwa
Sri Lanka
September 2007

## DECLARATION

I hereby declare that the work included in the thesis, in part or whole has not been submitted for any other academic qualification at any institution.

Eng. (Mrs.) Jeyaranie Sivakumar

## Certified by:

Dr. (Mrs.) M.T.P. Hettiarachchi, Project Supervisor, Department of Civil Engineering, University of Moratuwa, Sri Lanka.

Unikersity of Moratuwa, Sri Lanka
Electronic Theses \& Dissertations
www lib mit.ac Th

## STUDY OF WATER TOWERS

This thesis is submitted to the department of civil engineering in partial fulfillment of the requirement for the degree of master engineering in structural engineering design

## By

## JEYARANIE SIVAKUMAR

## Supervised By

## Dr. (Mrs) M.T.P. HETTIARACHCHI

Senior Lecturer

Department of Civil Engineering

# APPENDIX - SPECIMEN CALCULATION 

## A - INTZE WATER TOWER

DEPARTMENT OF CIVIL ENGINEERING<br>UNIVERSITY OF MORATUWA<br>SRI LANKA

## TABLE OF CONTENTS

Chapter Page

1. Introduction ..... A-1
2. Restriction in the programme ..... A-2
3. Selection of dimension ..... A-3
4. Calculation of membrane forces
4.1 Roof dome ..... A-6
4.2 Top ring beam ..... A - 12
4.3 Cylindrical ..... A - 13
4.4 Middle ring beam ..... A- 16
4.5 Conical ..... A - 17
4.6 Bottom ring beam ..... A - 24
4.7 Bottom spherical dome ..... A -25
4.8 Cylindrical shaft ..... A-29
5. Determination of forces and moments at the joints
5.1 Dome - Cylindrical wall joint ..... A - 33
5.2 Cylindrical - Conical wall joint ..... A-39
5.3 Conical - Dome - Cylindrical wall joint ..... A -45
6. Tabulation of membrane forces and moments
6.1 Spherical dome ..... A-52
6.2 Cylindrical wall ..... A-60
6.3 Conical shell ..... A-67
6.4 Bottom spherical dome ..... A-78
6.5 Analysis Cylindrical shaft ..... A-86
6.6 Design of foundation ..... A -104
7. Design of Reinforcement
7.1 Ventilator roof ..... A-109
7.2 Ventilator wall ..... A-117
7.3 Ventilator ring beam ..... A-119
7.4 Top dome ..... A- 121
7.5 Top ring beam ..... A- 128
7.6 Cylindrical wall ..... A-136
7.7 Middle ring beam ..... A-146
7.8 Conical wall ..... A-154
7.9 Bottom ring beam ..... A-163
7.10 Bottom dome ..... A-171
7.11 Internal shaft

A-1797.12 Shaft

$$
\text { A }-181
$$

7.13 Foundation ..... A-189
8. Reference ..... A-193

## NOTATIONS

d - Depth of ring beam.
E - Young's Modulus of Elasticity.
$\mathrm{H}_{\mathrm{O}} \quad-\quad$ Horizontal force at an edge.
$\mathrm{H}_{\mathrm{R}} \quad-\quad$ Radial force in a ring beam.
h - Height of water above the crown of the bottom spherical dome.
$h_{1} \quad-\quad$ Depth of water in the cylindrical portion of the tank.

M - Bending Moment - Subscripts s, x, \& $\phi$ denote the meridional bending moments in the conical shell, cylindrical shell and the spherical dome respectively. Subscript $\theta$ denotes the redundant moment at an edge. Subscript $O$ denotes the redundant moment at an edge. Subscript R denotes the radial moment in a ring beam.

N - Direct force - Subscripts $s, x, \& \phi$ denote the meridional forces in the conical shell, cylindrical shell and the spherical dome respectively. Subscript $\theta$ denotes the hoop force.

P - Line load per unit length.rsity of Moratuma, Sri Lanka
P - Load per unit area.

Q - Shearing force -- Subscripts s, $x, \& \phi$ denote the shearing forces in the conical shell, cylindrical shell and the spherical dome respectively.

R - Radius of a spherical dome.

V - Membrane rotation - Subscripts c, d, b, \& t denote the cylindrical shell,
x

- Radius of cylinder, ring beam.

Distance of appoint in a conical shell from the vertex of the cone.

- Thickness of shell, ring beam.


#### Abstract

spherical dome and the smaller and larger ends of a truncated conical shell respectively. - Rotation due to edge forces and moments - Subscripts c, d, b, \& t denote the cylindrical shell, spherical dome and the smaller and larger ends of a truncated conical shell respectively. Subscripts H and M denote the horizontal force and redundant moment applied at an edge respectively.


- Distance of a point from an end in a cylindrical shell.
y - Shell constant for a conical shell.

$$
y=2 \sqrt[4]{\frac{12\left(1-\mu^{2}\right) s^{2} \tan ^{2} \alpha}{t^{2}}}
$$

$\alpha_{1} \quad-\quad$ Angle made by a point in the spherical dome with its edge.
a - Angle made by a conical shell with its base circle.
$\beta \quad-\quad$ Shell constant.
(1) $\beta=\sqrt[4]{\frac{3\left(1-\mu^{2}\right) a^{2}}{t^{2}}}$ for a cylindrical shell
(2) $\beta=\sqrt[4]{\frac{3\left(1-\mu^{2}\right) R^{2}}{t^{2}}} \quad$ for a spherical shell
$\gamma \quad$ - $\quad$ Density of water.
$\mu \quad$ - $\quad$ Poisson's ratio.
$\Delta \quad-\quad$ Membrane displacement - Subscripts $\mathrm{c}, \mathrm{d}, \mathrm{b}, \& \mathrm{t}$ denote the cylindrical shell, spherical dome and the smaller and larger ends of a truncated conical shell respectively.
$\delta \quad-\quad$ Displacement due to edge forces and moments - Subscripts $\mathrm{c}, \mathrm{d}, \mathrm{b}, \& \mathrm{t}$ denote the cylindrical shell, spherical dome and the smaller and larger ends of a truncated conical shell respectively. Subscript R denotes the ring beam. Subscripts H and M denote the horizontal force and redundant applied moment applied at an edge respectively.

## STUDY OF WATER TOWERS

This thesis is submitted to the department of civil engineering in partial fulfillment of the requirement for the degree of master engineering in structural engineering design

## By

JEYARANIE SIVAKUMAR

Supervised By

Dr. (Mrs) M.T.P. HETTIARACHCHI
Senior Lecturer

Department of Civil Engineering

APPENDIX - SPECIMEN CALCULATION
B - CONICAL WATER TOWER

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF MORATUWA
SRI LANKA

## TABLE OF CONTENTS

## Chapter

1. Introduction
Page ..... B-1
2. Restrictions in the programme ..... B - 2
3. Selection of dimensions
3.1 Select angle of cone
3.2 Determine maximum diameter of conical shell ..... B - 3
B-3
3.3 Dimension of the tank for structural analysis ..... B-5
4. Calculation of membrane forces
4.1 Roof dome
4.2 Top ring beam ..... B-6 ..... B-6
4.3 Conical tank ..... B-12 ..... B-12
4.4 Bottom ring beam ..... B-13
B - 184.5 Bottom spherical dome
B - 20
4.6 Cylindrical shaft ..... B-235. Determination of forces and moments at the joints
5.1 Dome - Conical wall joint ..... B - 24
5.2 Conical - Dome - Cylindrical wall joint ..... B-30 ..... B-30
5. Tabulation of membrane forces and moments
6.1 Spherical dome ..... B-31
6.2 Conical shell ..... B-43
6.3 Bottom spherical dome ..... B - 54
6.4 Analysis Cylindrical shaft ..... B-61
6.5 Design of foundation ..... B-78
6. Design of Reinforcement
7.1 Ventilator roof ..... B-82
7.2 Ventilator wall ..... B-90
7.3 Ventilator ring beam ..... B - 92 ..... B - 92 ..... B-94
7.4 Top dome
7.5 Top ring beam ..... B-103
7.6 Conical wall ..... B - 112
7.7 Bottom ring beamB - 128
7.9 Internal shaft ..... B-137
7.10 Shaft ..... B - 1397.11 Foundation
7. ReferenceB - 152

## NOTATIONS

M - $\quad \begin{aligned} & \text { Bending Moment }- \text { Subscripts } s, x, \& ~ d \text { denote the meridional bending } \\ & \text { moments in the conical shell, cylindrical shell and the spherical dome } \\ & \text { respectively. Subscript } \theta \text { denotes the redundant moment at an edge. } \\ & \text { Subscript O denotes the redundant moment at an edge. Subscript R denotes }\end{aligned}$
Bending Moment - Subscripts $s, x, \& \phi$ denote the meridional bending
moments in the conical shell, cylindrical shell and the spherical dome
respectively. Subscript $\theta$ denotes the redundant moment at an edge.
Subscript $O$ denotes the redundant moment at an edge. Subscript R denotes
Bending Moment - Subscripts $s, x, \& \phi$ denote the meridional bending
moments in the conical shell, cylindrical shell and the spherical dome
respectively. Subscript $\theta$ denotes the redundant moment at an edge.
Subscript $O$ denotes the redundant moment at an edge. Subscript R denotes
Bending Moment - Subscripts $s, x, \& \phi$ denote the meridional bending
moments in the conical shell, cylindrical shell and the spherical dome
respectively. Subscript $\theta$ denotes the redundant moment at an edge.
Subscript $O$ denotes the redundant moment at an edge. Subscript R denotes the radial moment in a ring beam.
$\mathrm{N} \quad$ - Direct force - Subscripts $s, x, \& \phi$ denote the meridional forces in the conical shell, cylindrical shell and the spherical dome respectively. Subscript $\theta$ denotes the hoop force.

P - Line load per unit length.
P - Load per unit area.
Q - Shearing force -- Subscripts $s, x, \& \phi$ denote the shearing forces in the conical shell, cylindrical shell and the spherical dome respectively.

R - Radius of a spherical dome.
s - Distance of appoint in a conical shell from the vertex of the cone.
t - Thickness of shell, ring beam.
V - Membrane rotation - Subscripts $c, d, b, \& t$ denote the cylindrical shell, spherical dome and the smaller and larger ends of a truncated conical shell respectively.
v - Rotation due to edge forces and moments - Subscripts c, d, b, \& t denote the cylindrical shell, spherical dome and the smaller and larger ends of a truncated conical shell respectively. Subscripts H and M denote the horizontal force and redundant moment applied at an edge respectively.

- Depth of ring beam.
- Young's Modulus of Elasticity.
- Horizontal force at an edge.
- Radial force in a ring beam.
- Height of water above the crown of the bottom spherical dome.
- Depth of water in the cylindrical portion of the tank.

Line load per unit length.

- Radius of cylinder, ring beam.
- $\quad$ Shell constant for a conical shell.

$$
y=2 \sqrt[4]{\frac{12\left(1-\mu^{2}\right) s^{2} \tan ^{2} \alpha}{t^{2}}}
$$

$\delta \quad$ - Displacement due to edge forces and moments - Subscripts $c, d, b, \& t$ denote the cylindrical shell, spherical dome and the smaller and larger ends of a truncated conical shell respectively. Subscript R denotes the ring beam. Subscripts H and M denote the horizontal force and redundant applied moment applied at an edge respectively.

## STUDY OF WATER TOWERS

This thesis is submitted to the department of civil engineering in partial fulfillment of the requirement for the degree of master engineering in structural engineering design

## By

JEYARANIE SIVAKUMAR

Supervised By

Dr. (Mrs) M.T.P. HETTIARACHCHI
Senior Lecturer

Department of Civil Engineering

APPENDIX - SPECIMEN CALCULATION
C - CYLINDRICAL WATER TOWER

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

## TABLE OF CONTENTS

Chapter1. IntroductionPageC-1
2. Restrictions in the program ..... C - 2
3. Selection of dimensions ..... C-3
4. Structural analysis
4.1 Roof
4.2 Cylindrical wallC-44.3 Bottom slabC-5
4.4 Circular beam ..... C-6
4.5 Columns and bracings ..... C- 10
4.6 Foundation ring beamC-11
4.7 Foundation ..... C- 17

$$
\mathrm{C}-19
$$

5. Design of Reinforcement
5.1 Roof ..... C-22
5.2 Cylindrical wall ..... C-31
5.3 Base slab ..... C-40
5.4 Circular beam ..... C- 45
5.5 Columns ..... C-53
5.6 Bracings ..... C -60
5.7 Foundation ring beam ..... C-64
5.8 Annular raft footing ..... C. 72
6. Reference ..... C- 75
$A_{n} \quad$ - Constant relevant to shear in brace
$B_{n} \quad$ - Constant relevant to moment in brace
$d_{b} \quad$ - Depth of brace
$d_{c} \quad$ - Diameter or side of column
E - Young's Modulus of Elasticity.
h - Height above top ring beam a which wind on container acts
H - Height of tower
L - Height of panel $=\mathrm{H} /(\mathrm{N}+1)$
1 - Length of brace $=D \operatorname{Sin} \pi / n$
$\mathrm{M}_{\mathrm{bj}} \quad-\quad$ Moment in the $\mathrm{j}^{\text {th }}$ brace
$\mathrm{M}_{\mathrm{ci}} \quad$ - Moment in the column $n$ the $i^{\text {ith }}$ panel
$m_{i} \quad-\quad$ Moment in the $i^{\text {th }}$ panel
n - Number of columns
$\mathrm{N} \quad$ - Number of braces
$\mathrm{P}_{\mathrm{ci}} \quad$ - Load on the column in the $\mathrm{i}^{\text {th }}$ panel
$\mathrm{w}_{\mathrm{k}} \quad$ - Basic wind pressure
$Q_{i} \quad-\quad$ Shear in the $i^{\text {th }}$ panel
$S_{b j} \quad-\quad$ Shear in the $j^{\text {th }}$ brace
$S_{I} \quad$ - Multiplying factor relating to topology
$\mathrm{S}_{2} \quad$ - Multiplying factor relating to height above ground and wind braking
$S_{3} \quad$ - Multiplying factor related to life of structure
V - Basic wind speed in $\mathrm{m} / \mathrm{s}$
$W_{T} \quad$ - Wind force on container

- Wind force on columns in a panel
- Wind force on brace
- $\quad$ Shape factor for wind
- Angle between column
- Ratio between the cylinder height to cylinder mean diameter $0.8 \sim 0.9$
- Poisson's Ratio
- Weight of Water

