UNIVERSITY OF MORATUWA, SRI LANX

### A SCALABLE SOFTWARE QUALITY VERIFIER FRAMEWORK

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the degree of Master of Science

by

#### PARANA WIDANARALALAGE DILEEPA CHIRANTHANA JAYATHILAKE



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Supervised by? Ok. Amal Shehan Perera

Department of Electrical Engineering University of Moratuwa, Sri Lanka

February 2011

iniversity of Moratuwa



9,3208

96798

96798

# DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

. . . . . . . . . . . . .

## **UOM Verified Signature**

P.W.D.C. Jayathilake 18/02/2011

í E I endorse the declaration by the candidate.



# **TABLE OF CONTENTS**

.

いいのし

1

|           | DECLARATION                                                          | . i |
|-----------|----------------------------------------------------------------------|-----|
|           | Table of Contents                                                    | ii  |
|           | Abstract                                                             | v   |
|           | Table of Figures                                                     | vi  |
| Chapter 1 |                                                                      | . 1 |
| 1.1       | Software Outsourcing Business                                        | . 1 |
| 1.2       | Issues with Outsourcing                                              | . 2 |
| 1.3       | Value of Quality                                                     | . 2 |
| 1.4       | Existing Software Quality Verification Methods                       | . 4 |
| 1.5       | Value of a Quality Verification Framework for an outsourcing company | .4  |
| Chapter 2 |                                                                      | . 5 |
| 2.1       | Evaluation Contexts                                                  | . 5 |
| 2.2       | Output of Quality Evaluation                                         | . 6 |
| 2.3       | Components and Procedures to be implemented                          |     |
| Chapter 3 |                                                                      | . 8 |
| 3.1       | Modules and components of the system atuwa, Sri Lanka.               | . 8 |
| 3.1.1     | Electronic Theses & Dissentations                                    | . 8 |
| 3.1.2     | www.lib.mrt.ac.lk                                                    | . 8 |
| 3.1.3     | Öffline Quality Analyzer                                             | 10  |
| 3.1.4     |                                                                      |     |
| 3.1.5     | Configurations                                                       | 12  |
| 3.1.6     |                                                                      |     |
| 3.2       | Users of the system                                                  |     |
| 3.2.1     |                                                                      |     |
| 3.2.2     |                                                                      |     |
| 3.2.3     | • •                                                                  |     |
| 3.2.4     |                                                                      |     |
| -         | ~                                                                    |     |
| 4.1       | Svn hook                                                             |     |
| 4.2       | Commit Manager                                                       |     |
| 4.3       | Tools and Wrappers                                                   |     |
| 4.4       | Tool configuration                                                   |     |
| 4.5       | Output of the system                                                 |     |
| 4.6       | Usability considerations                                             |     |
|           |                                                                      |     |
| 5.1       | Hardware/Software Infrastructure                                     | 19  |

| 5.2                | Execution Flow                                                        | 20 |
|--------------------|-----------------------------------------------------------------------|----|
| 5.3                | Adding a new project to the code quality evaluation system            | 22 |
| 5.4                | Output of the system                                                  | 23 |
| 5.5                | Pilot project run                                                     |    |
| Chapter 6          |                                                                       |    |
| 6.1                | Problems associated with software application analysis                |    |
| <sup>.</sup> 6.1.1 | Log file interpretation                                               |    |
| 6.1.2              | Making inferences from interpreted information                        | 30 |
| 6.1.3              | Documenting lessons learnt from analysis                              | 30 |
| 6.1.4              | Presenting information to different levels of people                  | 30 |
| 6.2                | Framework Goals                                                       | 30 |
| 6.2.1              | Capability to handle huge log files                                   |    |
| 6.2.2              | Configurable syntax                                                   |    |
| 6.2.3              | Flexibility                                                           |    |
| 6.2.4              | Knowledge representation easily decodable by both humans and machines |    |
| 6.2.5              | Short learning curve                                                  |    |
| 6.2.6              | Promote reusable patterns                                             |    |
| 6.2.7              | Scalability                                                           |    |
| 6.3                | Framework Concepts rsity of Moratuwa, Sri Lanka.                      |    |
| 6.3.1              |                                                                       |    |
| 6.3.2              |                                                                       |    |
| 6.3.3              |                                                                       |    |
| 6.3.4              | Inferences expressed as 'scriptlets'                                  |    |
| 6.3.5              | Metadata                                                              |    |
| 6.4                | Implementation of the framework                                       |    |
| 6.4.1              | Data types                                                            |    |
| 6.4.2              | Punctions                                                             |    |
| 6.4.3              | File Manipulations                                                    |    |
| 6.4.4              | Metadata                                                              |    |
| 6.4.5              | 5 Parser                                                              |    |
| 6.4.6              | 5 Execution Engine                                                    |    |
| 6.4.7              | 7 Control Code                                                        | 41 |
| 6.4.8              | 8 Memory Manager                                                      |    |
| 6.4.9              | P Tools                                                               | 42 |
| 6.5                | Usage                                                                 | 42 |
| 6.6                | Proof of Concept Implementation                                       | 43 |
| Chapter 7          | ·                                                                     | 45 |
| 7.1                | Code Quality Evaluation Tools                                         | 45 |
| 7.1.1              | FxCop                                                                 | 45 |

۶

۰, ۲,

ø

ļ

| 7.1.2 | StyleCop                                                             | 46 |
|-------|----------------------------------------------------------------------|----|
| 7.1.3 | Gendarme                                                             | 46 |
| 7.1.4 | CppCheck                                                             | 47 |
| 7.1.5 | Checkstyle                                                           | 47 |
| 7.1.6 | PMD                                                                  | 48 |
| 7.1.7 | PMD-CPD                                                              | 48 |
| 7.2   | Binary Quality Analysis Tools                                        | 48 |
| 7.2.1 | Apache JMeter                                                        |    |
| 7.2.2 | Microsoft Application Verifier                                       | 49 |
| 7.2.3 | LeakDiag & LDGrapher                                                 | 50 |
| 7.2.4 | Process Monitor                                                      |    |
| 7.2.5 | Xperf                                                                |    |
| 7.2.6 | Application compatibility toolkit                                    |    |
| 7.3   | Other tools                                                          |    |
| 7.3.1 | Cruise Control                                                       |    |
| 7.3.2 | Maven                                                                |    |
| 7.3.3 | Sonar                                                                |    |
| •     |                                                                      |    |
| 8.1   | Conclusions Remarks and Discussion ratuwa, Sri Lanka                 |    |
| 8.2   | Future WorkElectronic Theses & Dissertations                         |    |
|       | Referenceswww.lib:mrt.ac.lk                                          |    |
|       | APPENDIX A: Scripting Language Syntax                                | 59 |
|       | APPENDIX B: Built-in functions in Product Quality Analyzer framework | 62 |
|       | B.1 Node functions                                                   | 63 |
|       | B.2 String functions                                                 | 69 |
|       | B.3 Integer functions                                                | 71 |
|       | B.4 Boolean functions                                                | 72 |
|       | B.5 List functions                                                   | 72 |
|       | B.6 General functions                                                | 73 |

1

ø

\*

## ABSTRACT

Outsourcing software development is a growing business that is proven to bring costeffective and efficient solutions for varying demands of software product companies. Though it has proven its capability in bringing value to products to stay ahead in competition, few inherent problems are also identified in this practice. A prominent issue is how to verify the quality of the applications delivered by the vendor. Given that a critical bug in production can bring disasters, it is vital to the outsourcer to make sure that the deliverables from the vendor conform to a well defined set of quality guidelines. The work described here is the design and implementation of a scalable software quality verification framework on top of which, industrial grade automated quality verification systems can be built with minimum effort.

The framework is built to evaluate both software code and applications. Code level evaluation is done in two phases; when the developer tries to add code to the repository and a deeper test covering a wide range of problems in an offline context. The rules used for evaluation, actions on results and alerting can be customized in project level.

The framework provides a programming interface and a set of tools for application evaluation. The simple yet powerful programming interface creates ground for building a knowledgebase accumutating the experience of veterans. This is used in collaboration with modern tools to evaluate applications against their performance, security, memory and IO usage, etc. www.lib.mrt.ac.lk

A quality verification system built using the framework which was put into action in a commercial software project proved to add a significant value to the deliverables. An experiment done with the programming interface showed that powerful analysis systems can be built to both evaluate deliverables and aid in software due-diligence process.

## TABLE OF FIGURES

| Figure 1.1 - | Cost of remediation for a bug identified in various phases       |    |
|--------------|------------------------------------------------------------------|----|
| Figure 3.1 - | Modules and components of the system                             | 9  |
| Figure 3.2 - | Use cases and actors of the system                               | 13 |
| Figure 4.1 - | Commit time code quality verifier system                         |    |
| Figure 4.2 - | Operation of commit time code quality verification system        | 17 |
| Figure 4.3 - | Output of Commit Manager for a commit containing rule violations |    |
| Figure 5.1 - | Offline Code Quality Analyzer Architecture                       | 19 |
| Figure 5.2 - | Execution flow in the code quality evaluation system             | 21 |
| Figure 5.3 - | Configuring rules for code quality evaluation                    |    |
| Figure 5.4 - | High level information on results                                |    |
| Figure 5.5 - | Names of violated rules and source files containing violations   |    |
| Figure 5.6 - | Rule violations pointed to the line in the source code           | 25 |
| Figure 5.7 - | part 1 of an email sent to developers by the system              | 25 |
| Figure 5.8 - | part 2 of an email sent to developers by the system              |    |
| Figure 6.1 - | Example Mind Map                                                 |    |
| Figure 6.2 - | Architecture for Product Quality Analyzer                        |    |
| Figure 6.3 - | Data types used in the framework                                 |    |
| Figure 6.4 - | Production rules for the parser                                  |    |
| Figure 6.5 - | An example script                                                |    |
| Figure 6.6 - |                                                                  |    |
| Figure 6.7 - | •                                                                |    |
| Figure 6.8 - |                                                                  |    |
| Figure 6.9 - |                                                                  |    |
|              | Liniversity of Moratuwa Sri Lanka                                |    |



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk