IMPROVEMENT OF SRI LANKAN PEATY CLAYS BY DEEP MIXING AND ELECTRO-OSMOSIS

W.A.S. Sarojini

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk

Department of civil Engineering University of Moratuwa Sri Lanka

August 2004

LB/DON /110/34

IMPROVEMENT OF SRI LANKAN PEATY CLAYS BY DEEP MIXING AND ELECTRO-OSMOSIS

ŀ

Thesis submitted in partial fulfillment of the Degree of Master in Engineering

Supervised by Dr. S.A.S Kulathilaka

> 624 "64" 624 (649)

82147

Department of civil Engineering University of Moratuwa Sri Lanka

August 2004

ACKNOWLEDGEMENT

Many thanks are due to University of Moratuwa for the services provided during the research and to the Asian Development Bank and the Ministry of Science and Technology, Sri Lanka for funding this research through the Science and Technology Personal Development project.

My sincere thanks to the project supervisor Dr. S.A.S Kulathilaka who proved an excellent supervisor to work with, has given me encouragement and inspiration throughout the process. I wish to acknowledge and express my gratitude to project coordinator Dr U.G.A Pussewala. My gratitude is extended to Dr. Saman Thilakasiri who gave valuable support and guidance to carryout this study.

The assistance received from Mr. Pitipanaarachchi, technical officer, Mr. D.G.S. Vithanage, technical officer and Mr. D. Bandulasena, lab assistant of the soil mechanics laboratory of the university of Moratuwa, during the laboratory–testing programme is acknowledged. I would like to acknowledge the assistance extended by Mr. J.M. Gunasekara, technical officer civil engineering workshop for fabricating test equipment successfully.

I hereby express my gratitude to Mr. Paranayapa, in the Road Development Authority (RDA) for allowing and facilitating the performance of consolidation test in RDA research laboratory. Thanks are also due to Mr Lalithananda, Research Assistant and all the staff in the soil mechanics laboratory in RDA for the assistance extended during the testing programme.

I also would like to thank Miss W.G.S.Munasinghe, Engineer of National Building Research Organization for both advice and encouragement given during my study.

Finally I acknowledge my colleagues Siddick, Mahinda, Kughan and Abeysinghe for their support given throughout the research period.

W.A.S Sarojini 18th August 2004.

CONTENTS

4

5

1

	Page
ACKNOWLEDGEMENT	
CONTENTS	
List of Figures	
List of Tables	
List of Annexes	
1.0 INTRODUCTION	
1.1 Problematic nature of peaty clays	1
1.2 Possible solutions	2
1.3 Ground improvement techniques	2
1.3.1 Ground improvement by densification	2
1.3.2 Ground improvement by solidification	4
1.4 Scope of the thesis	4
1.5 Outline of the thesis	5
2.0 DEEP MIXING PROCESS AND LABORATORY SIMULATION	
2.1 Deep mixing process Electronic Theses & Dissertations	7
2.2 Laboratory simulation of the process and test program	9
3.0 IMPROVEMENT OF COMPRESSIBILITY CHARACTERISTICS	3
DUE TO DEEP MIXING	
3.1 Introduction	16
3.2 Improvement of primary characteristics by deep mixing	17
3.2.1 Improvements reported in the coefficient of volume	
compressibility in peaty clays	17
3.2.2 Improvements observed in the coefficient of volume	
compressibility in the current project	17
3.2.3 Improvement in compression index and compression ratio	19
3.3 Improvement of secondary consolidation for peaty clays	21
3.3.1 Variation of C_{α} vs. stress level observed in previous research	21
3.3.2 Variation of C_{α} observed in this project	21
3.3.3 Variation of C_{α} with over consolidation achieved in preloading	22

Π

3.4 Concluding comments	22
4.0 IMPROVEMENT OF SHEAR STRENGTH CHARACTERISTICS	
BY DEEP MIXING	
4.1 Introduction	37
4.2 Shear strength test	38
4.3 Concluding comments	40
5.0 IMPROVEMENT OF SOFT PEATY CLAY BY ELECTRO OSMOS	SIS
5.1 Electro osmosis process	46
5.2 Improvement of compressibility by electro osmosis	46
5.2.1 Electro osmosis treatment under laboratory conditions	46
5.2.2 Improvement of primary compressibility characteristics of peaty	
clays by electro osmosis and comparisons	48
5.2.3 Improvement of secondary consolidation characteristics of peaty	
clay by electro osmosis	49
5.3 Improvement achieved in undrained shear strength and other basic	
properties	50
5.4 Conclusions from electro osmosis consolidation of peaty clays	52
6.0 ELECTRO OSMOSIS WITH PORE WATER PRESSURE	
MEASUREMENTS	
6.1 Introduction	60
6.2 Theoretical formulation of electro osmosis consolidation	60
6.3 Development of the apparatus	63
6.4 Test results	64
6.4.1 Tests with only an applied voltage difference	64
6.4.2 Tests with a load in addition to the applied voltage difference	65
6.5 Theoretical prediction of settlement and pore water pressure	65
6.5.1 Evaluation of negative pore water pressure due to electro osmosis	65
6.5.2 Iterative procedure to obtain k_e and predictions	67
6.6 Comparison of experimental observation and theoretical predictions	69
6.7 Numerical simulation of electro osmosis consolidation with applied	
loading	69

6.7.1 Pore pressure development at anode	69
6.7.2 Degree of consolidation and settlement	70
6.8 Comparisons of experimental results and predictions for the case with	
electro osmosis loading	71
7.0 CONCLUSIONS	86

 $\boldsymbol{\lambda}$

-

j,

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

А

	Page
2.1 Soil mixing tools (a) Blade based (b) Auger based suspended from a	
crane (after Probha 1998)	11
2.2 Machinery for marine construction: (a) Concept (b) DM barge (After	
Probha, 1998)	12
2.3 Machinery for land based projects (after Probha 1998)	13
2.4 (a) Mechanical mixing method	13
(b) Pressurized mixing method	13
2.5 Procedure for Mechanical deep mixing method (after Probha, 1998)	13
2.6 Cross section of several mixed columns (after Probha, 1998)	14
2.7 Various patterns of deep mixing (After Probha 1998)	15
3.1 Effect on cement mixing on m_v for Wattala Peat (after Munasinghe,	
2001)	24
3.2 Effect on Lime mixing on m_v for Paliyagoda Peat (after Priyankara at	
al, 2000)	24
3.3 Effect on cement mixing on my for Madiwela Peat (after Munasinghe,	
2001) www.lib.mrt.ac.lk	25
3.4 Effect on cement mixing on m_v for Madiwela Organic Silt (after	
Munasinghe, 2001)	25
3.5 Effect on different percentages of cement lime and combination of them	26
3.6 Effect on different percentages of cement	26
3.7 Effect on different percentages of lime	27
3.8 Effect on different percentages of cement: lime	27
3.9 Effect on different percentages of cement lime and combination of them	
for reloading	28
3.10 Effect on different percentages of cement for reloading	28
3.11 Effect on different percentages of lime for reloading	29
3.12 Effect on different percentages of cement: lime for reloading	29
3.13 e vs. log s curves for peat mixed with different percentages of cement	
lime and combination of them	30

3.14 Comparisons of e vs. log s plots	31
3.15 e vs. log (t) and ca vs. log (t) plots for peat mixed with 15% cement	31
3.16 e vs. log (t) and ca vs. log (t) plots for peat mixed with 20% cement	31
3.17 Ca vs. log s plot for Wattala peat (after Munasinghe 2001)	32
3.18 Ca vs. log s plot for Paliyagoda peat (after Priyankera at al 2000)	32
3.19 Ca vs. log s plot for Madiwela peat (after Munasinghe 2001)	32
3.20 Effect on different percentages of cement lime and combination of them	33
3.21 Effect on different percentages of cement	33
3.22 Effect on different percentages of lime	34
3.23 Effect on different percentages of cement: lime	34
3.24 variation of Ca'/Ca vs. over consolidation ratio for peat mixed with	
different percentages of cement lime and combination of them	35
3.25 variation of Ca'/Ca vs. over consolidation ratio for peat mixed with	
different percentages of cement	35
3.26 variation of Ca'/Ca vs. over consolidation ratio for peat mixed with	
different percentages of lime	36
3.27 variation of Ca'/Ca vs. over consolidation ratio for peat mixed with different percentages of cement: lime	36
4.1 Effect of age on compressive strength of soil-cement (after Probha et al	
2000)	41
4.2 Effect of cement type on compressive strength of cement (a) cement conten	nt
=160kg/m ³ ; (b) cement content =300kg/m ³ (after Prohba et al 2000)	41
4.3 Effect of cement on compressive strength of soil –cement (Uddin et al,	
1997)	42
4.4 Effect of initial water content of soil on compressive strength (Endo, 1976)	42
4.5 Tor vane test apparatus	43
4.6 Laboratory Vane shear apparatus	43
4.7 Undrained strength characteristics of peat mixed with 10%cement (curing	
time 3 month)	44

٨.

4.8 Undrained strength characteristics of peat mixed with 15%cement (curing	
time 3 month)	44
4.9 Undrained strength characteristics of peat mixed with 10%cement &10%	
Lime (curing time 3 month)	44
4.10 Undrained strength characteristics of peat mixed with 15%cement (curing	
time 5 weeks)	45
4.11 Undrained strength characteristics of peat mixed with 20%cement (curing	
time 5weeks)	45
4.12 Undrained strength characteristics of peat mixed with 10%cement & 10%	
Lime (curing time 5 weeks)	45
5.1 Model of electric double layer and cation hydration	53
5.2 Electro osmotic flow in capillary (Helmholtz-Smoluchowski Model)	53
5.3 Experimental Setup for Electro-osmotic Consolidation	54
5.4 Electrical circuit	54
5.5 Schematic diagram of cell and electrode	55
5.6 Effect on primary consolidation on peat improved by different method	55
5.7 Improvements by electro osmosis according to electrode type	56
5.8 Comparison of electro osmosis treated and untreated peat	56
5.9 Comparisons of electro osmosis, deep mixing and untreated peat	56
5.10 Typical graphs for e vs. log t and e vs. log Ca	57
5.11 Effect on secondary consolidation for preloading and electro osmosis	58
5.12 Comparison with electro osmosis, deep mixing and preloading	59
6.1 Boundary conditions with corresponding steady -state pore pressures	72
6.2 Comparison of theoretically predicted pressures with measured data (after	
Banerjee at el 1984)	73
6.3 Development of Electro osmosis pore pressures (after Shang 1998)	73
6.4 Excess pore pressures versus time for normal and for electro-osmotic	
consolidation (after Nettleton et al., 1998)	74
6.5 Negative pore water pressure measured at anode vs. time (after Chaudhary)	74
6.6 Components of the test setup	75
6.7 Test setup to measure pore water pressure and settlement	75

А,

6.8 Null indicator	76
6.9 Data logger	76
6.10 Observed settlements and pore water pressure variation for electro osmos	is
consolidation on amorphous peat-Test 1	77
6.11Observed settlements and pore water pressure variation for electro osmosi	S
consolidation on amorphous peat-Test 2	77
6.12Observed settlements and pore water pressure variation for electro osmosi	S
consolidation on amorphous peat-Test 4	78
6.13Observed settlements and pore water pressure variation for electro osmosi	S
consolidation on amorphous peat-Test 5	78
6.14Observed settlements and pore water pressure variation for electro osmosi	S
consolidation with a preloading of 40 kN/m^2 on amorphous peat-Test 6	79
6.15Observed settlements and pore water pressure variation for electro osmosi	s
consolidation with a preloading of 40 kN/m^2 on amorphous peat-Test 7	79
6.16Comparison of Calculated and Observed Pore Water Pressure for Electro	
osmosis Consolidation on Remolded Amorphous Peat Test-1	80
6.17Comparison of Calculated and Observed settlements for Electro osmosis	
Consolidation on Remolded Amorphous Peat Test-1	80
6.18Comparison of Calculated and Observed Pore Water Pressure for Electro	
osmosis Consolidation on Remolded Amorphous Peat Test-2	81
6.19Comparison of Calculated and Observed settlements for Electro osmosis	
Consolidation on Remolded Amorphous Peat Test-2	81
6.20Comparison of Calculated and Observed Pore Water Pressure for Electro	
osmosis Consolidation on Remolded Amorphous Peat Test-4	82
6.21Comparison of Calculated and Observed settlements for Electro osmosis	
Consolidation on Remolded Amorphous Peat Test-4	82
6.22 Comparison of Calculated and Observed pore pressure for Electro osmos	is
Consolidation for Remolded Amorphous Peat Test-5	83
6.23 Comparison of Calculated and Observed settlements for Electro osmosis	
Consolidation for Remolded Amorphous Peat Test-6	83

4.

6.24 Comparison of Calculated and Observed Pore Water Pressure for Electro	
osmosis Consolidation with Preloading on Remolded Amorphous Peat	
Test-6	84
6.25 Comparison of Calculated and Observed Pore Water Pressure for Electro	
osmosis Consolidation with Preloading on Remolded Amorphous Peat	
Test-6	84
6.26 Comparison of Calculated and Observed Pore Water Pressure for Electro	
osmosis Consolidation with Preloading on Remolded Amorphous Peat	
Test-7	85
6.27 Comparison of Calculated and Observed settlement for Electro osmosis	

Consolidation with Preloading on Remolded Amorphous Peat Test-7 85

*

 $\overline{}$

ł

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

A

 $\dot{}$

4

Page

3.1 Basic properties of the selected peaty clay	16
3.2 Basic properties for different mix proportion	18
3.3 C _c /1+e ₀ and C _r /1+e ₀ values for improved peat and non-improved peat	20
4.1 Shear strength values using unconsolidated undrained test	38
4.2 Shear strength values using Laboratory vane shear test	39
4.3 Shear strength values using Tor vane test	39
5.1 Electro osmosis treatments	47
5.2 Improvement on basic properties of the peat	50
5.3 Improvement on shear strength	50
5.4Improvement on shear strength by deep mixing and	electro
osmosis consolidation	51
6.1Coefficient of electro osmotic permeability (after Mitchell 1997)	67

APPENDIX

A

 $\overline{}$

I.

	Page
Appendix I	92
Results of Laboratory vane shear test	93
Appendix II	98
Calculation of pore water pressure for electro osmosis consolidation	99
Calculation of settlement for electro osmosis consolidation	100
Calculation of pore water pressure for electro osmosis consolidation with	h direct
load	101
Calculation of settlement for electro osmosis consolidation with direct lo	ad 102

