LB/DON/03/04

HYDRAULIC PERFORMANCE OF COASTAL AND HARBOUR STRUCTURES.

by

U. G. Thushari Thilakarathne

NACTOR STATES VA, SRI MI

A thesis submitted to University of Moratuwa for the Degree in Master of Engineering

Research supervised

by

Professor S. S. L. Hettiarachchi

UM Thesis Coll.

79560

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA

19

ABSTRACT

The main focus of the research study is the development of an analytical model for the prediction of reflection and transmission coefficients of porous vertical structures of both the open and close (absorber) types. Having developed governing equations for the different flow regions, appropriate boundary conditions and other justified simplifications have to be adopted in order to develop a solution.

The input data for the model are the incident wave characteristics and the properties of the porous media. The wave climate is identified by its height, the wave period and still water depth. The porous structure it self is characterized by its length, overall porosity and the flow coefficients in the Forchcheimer equation ($I = au + bu^2$). The model was verified with results obtained from hydraulic model investigations conducted previously.

This study incorporates a literature review and presents the results of hydraulic performances especially on wave reflection and transmission characteristics of a wide range of structures varying from vertical, homogeneous sloping, multi layered sloping and berm configurations.

Hydraulic model test can provide reliable method to quantify many of the wave structure response functions for sea walls and breakwaters. But fewer experiments have been carried out of these structures in Sri Lanka especially on berm structures. Therefore a detailed hydraulic model investigation (1:20) relating to the hydraulic performances of berm breakwater with berm width of 6m was done as a part of this study. It was tested in Lanka Hydraulic Institute (LHI), Katubedda, Moratuwa. The results are compared with a model investigation done on a berm structure with the berm width of 12m at a scale of 1:20 (also tested in Lanka Hydraulic Institute in 1999).

ACKNOWLEDGEMENT

I wish to express my thanks to Professor S.S.L Hettiarachchi for his supervision, encouragement and guidance provided during the course of research study. I am thankful for him for arranging me to work at Lanka Hydraulic Institute (LHI), Katubedda, Moratuwa, for the model investigation. I am also grateful for him for the support given me in all aspects.

I wish to express my gratitude to the Vice Chancellor, Dean of Engineering Faculty and the Senate Research committee, Head, Department of Civil Engineering, Director, Postgraduate Studies of University of Moratuwa, for funding this project through Asian Development Bank and giving me an opportunity for research.

My sincere thanks are also due to Dr. Saman Samarawickrama for his support during my research work.

I wish to thank the management and staff of Lanka Hydraulic Institute (LHI) for their utmost corporation and making available their facilities at a reduced cost. My special thanks go to Mr. Jayantha Rajapakse for the support given in my model testing.

My heartfelt gratitude goes to my parents, my husband and my husband's parents for the encouragement given and standing by me throughout.

DECLARATION

This thesis is a report of research carried out in the Department of Civil Engineering, University of Moratuwa, between Febuary 2002 and December 2003. Expect where references are made to other work, the contents of this thesis are original and have been carried out by the undersigned. The work has not been submitted in part or whole to any other university. This thesis contains 150 pages.

Thelevernthis

U.G.T. Thilakarathne Department of Civil Engineering University of Moratuwa Sri Lanka

UOM Verified Signature trily of Moratuwa, Sri Lanka.

Ŋ ^

lib.mrt.ac.lk

Supervisor Prof. S.S.L. Hettiarachchi Department of Civil Engineering University of Moratuwa Sri Lanka

CONTENTS

.

ABSTRACT	i
ACKNOWLEDGEMENT	ii
DECLARATION	iii
CONTENTS	iv
LIST OF TABLES AND FIGURES	vii
CHAPTER 1 : Introduction	1
1.1 Background	1
1.2 Objective of the study	2
1.3 Guide to the thesis	2
CHAPTER 2 : Review of literature and important aspects	
of wave structure interaction in harbours	4
2.1 Wave activity in harbour basins	4
2.2 Rubble mound Breakwaters	7
2.3 Rock armoured rubble mound breakwaters	8
2.3.1 Classification of rock armoured rubble mound breakwaters	8
2.3.2 Issues relating to the hydraulic design	10
2.3.2.1 Design concepts of re-shaping berm breakwaters	10
2.3.2.2 Dynamics of re-shaping structures and their stability	10
2.3.2.3 Influence of the porous mass armour and the berm	11
2.3.2.4 Durability of rocks	12
2.3.2.5 Performance under extreme conditions	13
2.3.2.6 Economy of construction	13
2.4 Concrete armoured rubble mound breakwaters	14
2.4.1 Background to the development of artificial concrete units	14
2.4.2 Lessons learnt from breakwater failures	14
2.4.3 Desired features of Concrete Armour Units	16
2.4.4 Types of Concrete Armour Units	17

iv

2.5	Reducin	ig wave dis	turbances in harbour basins	19
	2.5.1	Low refle	ction alternatives	19
	2.5.2	Piled quar	y over armoured rubble slopes	21
	2.5.3	Types of	porous vertical structures	22
2.6	Importa	nt paramete	ers affecting the hydraulic performances	25
	2.6.1	Wave End	ergy Dissipation arising from Wave-Structures	
		interaction	n	25
	2.6.2	Parameter	rs for porous media in gerenal	28
	2.6.3	Hydraulic	s of Flow through and Wave Action on Porous Media	30
		2.6.3.1	Flow regimes in Porous Media	30
		2.6.3.2	Steady Darcy Flow	31
		2.6.3.3	Steady non-Darcy Flow in Porous Media	33
		2.6.3.4	Unsteady Flow in Porous Media	37
		2.6.3.5	Wave Action on Porous Structures	38
СН	APTER 3	· M	Iathematical Model Investigation	47
			University of Moratuwa, Sri Lanka.	
3.1	Thoeriti		pments leading to the Analytical Model	47
	3.1.1	Introducti	on	47
	3.1.2	Governin	g Equations	48
	3.1.3	Applicati	on to open block structure	54
	3.1.4	Applicati	on to close block structure	57

3.2 Impotant aspects to be noted on the application of the model3.2.1 Evaluation of the model and modifications to overcome

	Limitations	60
3.3	Varification of model by comparison with experimental results	62
3.4	Sensitivity Analysis	63

CHAPTER 4 : **Performance of structure of varying geometry** 67

4.1	Reanaly	rsis of experimental data	67
	4.4.1	Vertical, Porous homogeneous structures	67
	4.4.2	Trapizoidal – homogeneous structures	70
	4.4.3	Trapizoidal – layred structures	72

v

	4.4.4	Trapizoidal –structure with a berm	73
4.2	Results	of experimental investigation	75
	4.2.1	Relevance of large scale Hydraulic Models	75
	4.2.2	Approach to the study	75
	4.2.3	Structure Investigated	75
	4.2.4	Experimental setup	76
	4.2.5	Discussion of results	77

CHAPTER 5:	Conclusion & recommendations	119
Reference		122
Annex A		125
Annex B		136

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

SUMMARY OF TABLES AND FIGURES

.

TABLE	DESCRIPTION	PAGE
3.1	Response of the analytical solution to variation in Laminar and Turbulent flow	66
3.2	Response of the analytical solution to variation of wave period	66
4.1	Summary of reanalyzed Vertical structures	78
4.2	Summary of reanalyzed Trapezoidal structures	79
4.3	Experimental results of statically stable berm breakwater (Berm width of 6m)	114

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

·

vii

FIGURE

.

¥

i

1

DESCRIPTION

PAGE

2.1	Types of rubble mound breakwaters		40
2.2	Comparison of the flow regime for conventional breakwat and mass armoured breakwaters	er	41
2.3	Typical armour layer failure characteristics for various typ of rubble mound structures (Burchaharth 1993)	es	41
2.4	Typical structural configurations of berm breakwaters investigated by researchers (Torum 1995)		41
2.5	Concrete Armour units		42
2.6	Piled quay over armoured slope		43
2.7	Piled quay over armoured slope on part-depth caisson		43
2.8	Single and Double screen protection against waves		44
2.9	Multiple screen wave absorbing pier		44
2.10	Perforated breakwater having rock-fill compartment		44
2.11	Slotted breakwater having permeable wall		45
2.12	Stacked voided blocks-Igloo Units		45
2.13	Stacked voided blocks-Neptune Units		45
2.14	Cylindrical cribwork using steel hoops		46
3.1	Kr (Theoritical) Vs Kr (Experimental) for Cob armour units		64
3.2	Kt (Theoritical) Vs Kt (Experimental) for Cob armour units		64
3.3	Kr (Theoritical) Vs Kr (Experimental) for Shed armour units		65
3.4	Kt (Theoritical) Vs Kt (Experimental) for Shed_armour units		65
4.1	Coefficient of Reflection Vs Steepness for Rounded stones ($L = 450$ mm)	in the second	80

viii

4.2	Coefficient of Transmission Vs Steepness for Rounded stones ($L = 450$ mm)	80
4.3	Coefficient of Reflection Vs Steepness for Rounded stones ($L = 550$ mm)	81
4.4	Coefficient of Transmission Vs Steepness for Rounded stones ($L = 550$ mm)	81
4.5	Coefficient of Reflection Vs Steepness for Randomly packed spheres (Diameter = 19mm)	82
4.6	Coefficient of Transmission Vs Steepness for Randomly packed spheres (Diameter = 19mm)	82
4.7	Coefficient of Reflection Vs Steepness for Randomly packed spheres (Diameter = 25mm)	83
4.8	Coefficient of Transmission Vs Steepness for Randomly packed spheres (Diameter = 25mm)	83
4.9	Coefficient of Reflection Vs Steepness for Cylindrical Lattice (Diameter = 15mm)	84
4.10	Coefficient of Transmission Vs Steepness for Cylindrical Lattice (Diameter = 15mm)	84
4.11	Coefficient of Reflection Vs Steepness for Cylindrical Lattice (Diameter = 20mm)	85
4.12	Coefficient of Transmission Vs Steepness for Cylindrical Lattice (Diameter = 20mm)	85
4.13	Coefficient of Reflection Vs Steepness for Cylindrical Lattice (Diameter = 30mm)	86
4.14	Coefficient of Transmission Vs Steepness for Cylindrical Lattice (Diameter = 30mm)	86
4.15	Coefficient of Reflection Vs Steepness for Cob armour unit (Diameter= 19 mm, L= 330 mm)	87
4.16	Coefficient of Transmission Vs Steepness for Cob armour unit (Diameter= 19 mm, L= 330 mm)	87
4.17	Coefficient of Reflection Vs Steepness for Cob armour unit (Diameter= 19 mm, L= 332.8 mm)	88
4.18	Coefficient of Transmission Vs Steepness for Cob armour unit (Diameter= 19 mm, L= 332.8 mm)	88

4.19	Coefficient of Reflection Vs Steepness for Cob armour unit (Diameter= 19 mm, L= 520 mm)	89
4.20	Coefficient of Transmission Vs Steepness for Cob armour unit (Diameter= 19 mm, L= 520 mm)	89
4.21	Coefficient of Reflection Vs Steepness for Shed armour units (Diameter= 21.54 mm)	90
4.22	Coefficient of Transmission Vs Steepness for Shed armour units (Diameter= 21.54 mm)	90
4.23	Coefficient of Reflection Vs Steepness for Stolk units (Diameter= 20 mm)	91
4.24	Coefficient of Transmission Vs Steepness for Stolk units (Diameter= 20 mm)	91
4.25	Coefficient of Reflection Vs Steepness for Stolk units (Diameter= 25 mm)	92
4.26	Coefficient of Transmission Vs Steepness for Stolk units (Diameter= 25 mm)	92
4.27	Coefficient of Reflection Vs Steepness for Cob units-interface	93
4.28	Coefficient of Transmission Vs Steepness for Cob units-interface	93
4.29	Coefficient of Reflection Vs Steepness for Shed units-interface	94
4.30	Coefficient of Transmission Vs Steepness for Shed units-interface	94
4.31	Coefficient of Reflection Vs Steepness for Pile structure (uniform and rows not staggered)	95
4.32	Coefficient of Transmission Vs Steepness Pile structure (uniform and rows not staggered)	95
4.33	Coefficient of Reflection Vs Steepness for Pile structure (alternate rows staggered)	96
4.34	Coefficient of Transmission Vs Steepness Pile structure (alternate rows staggered)	96
4.35	Coefficient of Reflection Vs Iribarren Number for trapezoidal homogeneous structure with spheres (Dia.=19mm)	97

E

x

4.36	Coefficient of Transmission Vs Iribarren Number for trapezoidal homogeneous structure with spheres (Dia.=19mm)	97
4.37	Coefficient of Reflection Vs Iribarren Number for trapezoidal homogeneous structure with spheres (Dia.=25mm)	98
4.38	Coefficient of Transmission Vs Iribarren Number for trapezoidal homogeneous structure with spheres (Dia.=25mm)	98
4.39	Coefficient of Reflection Vs Iribarren Number for trapezoidal homogeneous structure with Stones	99
4.40	Coefficient of Reflection Vs Iribarren Number for trapezoidal homogeneous structure with Cobs	100
4.41	Coefficient of Transmission Vs Iribarren Number for trapezoidal homogeneous structure with Cobs	100
4.42	Coefficient of Reflection Vs Iribarren Number for trapezoidal layered structure with Stones	101
4.43	Coefficient of Transmission Vs Iribarren Number for trapezoidal layered structure with Stones	101
4.44	Coefficient of Reflection Vs Iribarren Number for trapezoidal layered structure with Stones	102
4.45	Coefficient of Transmission Vs Iribarren Number for trapezoidal layered structure with Stones	102
4.46	Coefficient of Reflection Vs Iribarren Number for trapezoidal layered structure with Stones	103
4.47	Model test section (Allsop and Channell)	104
4.48	Coefficient of Reflection Vs Steepness for berm breakwater	105
4.49	Coefficient of Reflection Vs Berm length/Mean local wave length for berm structure	105
4.50	Coefficient of Reflection Vs Steepness for berm breakwater	106
4.51	Coefficient of Reflection Vs Berm length/Mean local wave length for berm structure	106
4.52	Details of the model	107

Ī

xi

4.53	Experimental setup for 1:20 scale model of statically stable berm structure (Berm width = $12m$)	107
4.54	Coefficient of Reflection Vs Steepness for regular waves (depth = 7m)	108
4.55	Coefficient of Reflection Vs Steepness for regular waves (depth = 8m)	108
4.56	Coefficient of Reflection Vs Steepness for regular waves (depth = 9m)	108
4.57	Coefficient of Transmission Vs Steepness for regular waves (depth = 7m)	109
4.58	Coefficient of Transmission Vs Steepness for regular waves (depth = 8m)	109
4.59	Coefficient of Transmission Vs Steepness for regular waves (depth = 9m)	109
4.60	Coefficient of Reflection Vs Steepness for random waves	110
4.61	Coefficient of Transmission Vs Steepness for random waves	110
4.62	Lanka Hydraulic Institute (LHI) – Laboratory Flume	111
4.63	Experimental setup for 1:20 scale model of statically stable berm breakwater tested at LHI (Berm width = $6m$)	112
4.64	Details of the model	113
4.65	Coefficient of Reflection Vs Steepness for regular waves (depth = 7m)	115
4.66	Coefficient of Reflection Vs Steepness for regular waves (depth = 8m)	115
4.67	Coefficient of Reflection Vs Steepness for regular waves (depth = 9m)	115
4.68	Coefficient of Reflection Vs Steepness for random waves (depth = 7m)	116
4.69	Coefficient of Reflection Vs Steepness for random waves (depth = 8m)	116
4.70	Coefficient of Reflection Vs Steepness for random waves (depth = 9m)	116

ł

l

E

xii

4.71	Coefficient of Transmission Vs Steepness for regular waves (depth = 7m)	117
4.72	Coefficient of Transmission Vs Steepness for regular waves (depth = 8m)	117
4.73	Coefficient of Transmission Vs Steepness for regular waves (depth = 9m)	117
4.74	Coefficient of Transmission Vs Steepness for random waves (depth = 7m)	118
4.75	Coefficient of Transmission Vs Steepness for random waves (depth = 8m)	118
4.76	Coefficient of Transmission Vs Steepness for random waves (depth = 9m)	118

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk
