LB/DON/87/03

ACOUSTICS IN ARCHITECTURE AN EXAMINATION OF ITS ROLE AS AN ELEMENT CONTRIBUTING TO THE QUALITATIVE ATTRIBUTES OF SPACE

OLIMERS : O. MORATULIA, STO M. C. MORATUMA A Dissertation Submitted to the Department of Architecture of the University of Moratuwa in partial fulfillment of the requirements of the degree of 72 03 Master of Science 729.81:534.84 in Architecture ARCHI M.Sc I/II 04 JAN 2003 ^{Course} W rsity of Moratuwa Moratuwa by 79031 P. K. P. P. NANDASENA UM Thesis January 2003 79031

79031

Acknowledgements:

With a deep sense of gratitude I wish to acknowledge the following, whose most generous contributions in innumerable way facilitated to shape up this dissertation.

- Archt. Dr. Rohinton Emmanuel, my supervisor, for his invaluable advice, intellectually vigorous discussions, guidance and encouragement given to me through out the course of the study.
- Archt. Vidura Sri Nammuni, the year master, for his intellectually vigorous discussions.
- Archt. Prasanna Kulatilake, for spending his valuable time in giving advice.
- Archt. Ravin Goonaratne, for his invaluable comments, suggestions and guidance given at the early stages.
- Mr. Bandaranayake, the General Manager, Kalutara Bodhi Trust Fund, and his staff, for their kind assistance and cooperation given in finding out necessary data.
- Mrs. Premarathne, Head of the Department, Department of Physical Science, University of Moratuwa, for her generous contribution and theoretical explanations about the subject.
- Archt. Shaminda Senarathne, for his valuable guidance for directing me towards the correct direction
- And all other tutors for sharing their views and amicable with me in all times.
- And my dear friends especially, *Thushara Ayya* and his colleagues, in the University Library, in need for very pleasant time-shared for generous help and encouragement given to me.
- My beloved parents and all the family members for their blessings and love extended to me, all the time.
- Last but by all means not least, to my dear Nimali, who constantly inspire me, facilitating a silence crusade within, not only during my entire period of the University, but all through my life.

I

A COUSTICS IN ARCHITECTURE AN EXAMINATION OF ITS ROLE AS AN ELEMENT CONTRIBUTING TO THE QUALITATIVE ATTRIBUTES OF SPACE

.

CONTENTS

Acknowledgement	Page No. i			
Contents				
List of Figures				
Abstract	viii			
CHAPTER ONE: INTRODUCTION	01			
1.1 Background to the Study	01			
1.2 Problem Statement	01			
1.3 Significance of the Study	01			
1.4 Intention of the Study	02			
1.5 Long-range Consequences	02			
1.6 Methodology	03			
1.7 Scope and Limitations Electronic Theses & Dissertations	04			
CHAPTER TWO: AESTHETICS OF ARCHITECTU	RE AND			
ACOUSTICS	05			
2.1 Language of Architectural Expressions	05			
2.1.1 Proportion and Scale	06			
2.1.2 Composition	10			
2.1.3 Expression of Function	12			
2.2 Acoustics in Architecture				
2.2.1 Principles of Acoustics	15			
2.2.1.1 Pure Tone & Complex Sound	16			
2.2.1.2 Wavelength & Velocity of Sound	17			
2.2.1.3 Frequency of Sound & Audible Range	17			
2.2.1.4 Sound and Hearing	19			
2.2.1.5 Intensity of Sound	20			
2.2.1.6 Measurement of Sound Level	20			

·	2.2.2 Sour	nd Phenomena	22
	2.2.2.1	Absorption & Reflection	22
	2.2.2.2	Diffusion & Diffraction	24
	2.2.2.3	Reverberation	25
	2.2.2.4	Echo	27
	2.2.2.5	Noise	28
	2.2.3 Des	ign Techniques	29
	2.2.3.1	Sound Absorbing Treatment	29
	2.2.	3.1.1 Sound Absorption Co-efficient	30
	2.2.	3.1.2 Porous Absorbers	31
	2.2.	3.1.3 Membrane Absorbers (Panel Absorbers)	31
	2.2.	3.1.4 Cavity Absorbers (Volume Resonators)	32
	2.2.	3.1.5 Broadband Absorbers	33
	2.2.	3.1.6 Variable Sound Absorbers	33
	2.2.	3.1.7 Prefabricated Sound Absorbing Materials	33
	2.2.	3.1.8 Sound Absorbing Panels and Units	34
	2.2.3.2		34
	2.2.	3.2.1 Optimum Reverberation Time	37
	2.2.3.3	Echo Control	37
2.3	Historical D	evelopment of Acoustically Favorable Buildings	38
	2.3.1 Acc	oustics in Greek Architecture	38
	2.3.2 Acc	oustics in Roman Architecture	40
	2.3.3 Acc	oustics in Renaissance Architecture	40
2.4	Planning for	· Good Acoustics	41
	2.4.1 Beh	avior of Sound within Four Walls	42
	2.4.2 Beh	avior of Ceiling against the Sound	44
	2.4.2.1	Flat Ceiling	44
	2.4.2.2	Barrel Vault Ceiling	44
	2.4.2.3	Segment of a Barrel Vault	45
	2.4.3 Cha	racteristic Shapes	45
	2.4.4 Sel	ected Examples	46

-¥

·

	2.4	.4.1	Albert Hall, London	46
	2.4	.4.2	Woodruff Health Science Centre, Emory University	49
	2.4	.4.3	Boettcher Concert Hall, Colorado	50
	2.4	.4.4	Studio B, Todd-AO Films, California	51
СН	APTER	THR	REE: CASE STUDIES	53
3. 1 J	Iustificati	ion of	Case Studies	53
	3.1.1	Kalu	t ara <i>Chaithya</i> , Kalutara	53
	3.1.2	Pread	ching Hall (Dham Sabha Mandapa) Kalutara	55
3.2]	Method o	f Ana	lysis	57
	3.2.1	Subj	ective Judgement of Performance of Sound	58
	3.2.2	Evah	uation Guide	59
СН	APTER	FOU	R: RESULTS AND ANALYSIS	60
4.1	Results	from	Evaluation Guide	60
	4.1.1	Case	study One: Kalutara <i>Chaithya</i> , Kalutara	60
	4.1.2	Case	Study Two: Preaching Hall, Kalutara	60
4.2	Calcula	tion o	f Reverberation Time	60
	4.2.1	Calc	ulation of Cubic Volumes	61
	4.2.2	Calc	ulations of Surface Areas	61
	4.2.3	Reve	erberation Time of Kalutara Chaithya, Kalutara	61
	4.2.4	Reve	erberation Time of Preaching Hall, Kalutara	6 2
4.3	Analysi	s of D	ata	64
	4.3.1	Kalu	itara Chithya	64
	4.3.2	Prea	ching Hall	66
	4.3.3	Conc	cluding Remarks	6 8
Сн	APTER	FIV	E: CONCLUSION	69
LIS	T OF R	EFE	RENCES	71
AP	PENDIX	Κ		73

1

.

ÍV

|

List of Figures:

1

+

Page No.

Fig. 01: The Presence of Triangle in Greek Proportions.	06
Fig. 02: Geometrical relationship in Details.	07
Fig. 03: House at Green Lawn, Long Island, USA	07
Fig. 04: Expression of Superior Humanism and Less Humanism	09
Fig. 05: Scale of doors and windows compared with human scale	09
Fig. 06: Tightly packed town of small alleys and little arches	10
Fig. 07: Asymmetrical Composition	11
Fig. 08: Sculpture Galleries at Vatican	11
Fig. 09: Typical American bank building	12
Fig. 10: Vibration of particle in air.	16
Fig. 11: Graphical representation of Pure Tone.	16
Fig. 12: Graphical representation of complex sound	16
Fig. 13: Air-borne sound and structure-borne sound in concrete	17
Fig. 14: Octave band ranges of three musical instruments	18
Fig. 15: Frequency ranges for human speech.	19
Fig. 16: Sound Level and Hearing	19
Fig. 17: Relationship of sound intensity with the distance.	20
Fig. 18: Decibel levels of some familiar Sounds.	21
Fig. 19: Room with no acoustical treatment.	22
Fig. 20: Reflection of sound waves.	23
Fig. 21: Concave Reflection	23
Fig. 22: Flat Reflector	23
Fig. 23: Convex Reflector	24
Fig. 24: Diffusion of sound waves.	24
Fig. 25: Diffraction of sound waves.	25
Fig. 26: Optimum Reverberation Time	27
Fig. 27: Potential Echo-Producing Surfaces	27
Fig. 28: Flutter Sound Paths	28
Fig. 29: Creep Echo from dome	28

Fig. 30:Room with Sound- Absorbing Treatment	29
Fig. 31: Effect of adding Sound- Absorbing Treatment	30
Fig. 32: Sound Absorption Coefficient of different Materials	30
Fig. 33: Efficiency of Porous Absorbers	31
Fig. 34: Efficiency of Membrane Absorbers	32
Fig. 35: Efficiency of Cavity Absorbers	32
Fig. 36: commonly available Prefabricated Sound-absorbing Materials	33
Fig. 37: commonly available Prefabricated Sound-absorbing Panels and Units	34
Fig. 38: Sound Absorption Data for common Building Materials and Furnishing	. 36
Fig. 39: Optimum Reverberation Time for different activities	37
Fig. 40: Rear Wall Echo Control Treatment	37
Fig. 41: Greek Odeion Room	38
Fig. 42: Theatre at Oropos	39
Fig. 43: Greek Players upon Orchestra Floor	39
Fig. 44: Comparison of Greek and Roman Theatres	40
Fig. 45: Plan of the Teatro Olimpico, Vicenza, by Palladio	41
Fig. 46: Plan showing the sound source and the receiver	42
Fig. 47: Plan showing the prorogation of sound within 4 walls	42
Fig. 48: Behavior of Flat Ceiling	44
Fig. 49: Behavior of Barrel Vault Ceiling	45
Fig. 50: Behavior of Segment of a Barrel Vault Ceiling	45
Fig. 51: Section of a Simple Auditory Type	46
Fig. 52: Albert Hall London Plan	47
Fig. 53: Long Section of Albert Hall London	47
Fig. 54: Long Section of showing the action of ceiling when sound source is raise	ed48
Fig. 55: Building Section, Woodruff Center, Emory University, Georgia	49
Fig. 56: Auditorium Section, Woodruff Center, Emory University, Georgia	49
Fig. 57: Auditorium from Balcony, Woodruff Center, Emory University, Georgia	a 50
Fig. 58: Building Section, Boettcher Concert Hall, Colorado	50
Fig. 59: Hall Plan, Boettcher Concert Hall, Colorado	51
Fig. 60: Hall from Upper Level Balcony, Boettcher Concert Hall, Colorado	51

Fig. 61: Studio from Control Room	52
Fig. 62: Arial Perspective of the Studio	52
Fig. 63: Exterior View of Chithya standing as an Object	53
Fig. 64: Nirvana- the end of Life	54
Fig. 65: Preaching Hall influenced by Traditional Religious Architecture	55
Fig. 66: Shrine Room of Embekke Devalaya	55
Fig. 67: Maha Saman Devalaya, Rathnapura	56
Fig. 68: Suvisuddharamaya, Seeduwa	56
Fig. 69: Visual Proportions and Scale of Preaching Hall	57
Fig. 70: Pure White hemispherical Dome as can be seen from the interior	64
Fig. 71: Absorbing Wood Paneling designed to aesthetic and acoustic purposes	65
Fig. 72: Highly reflective Terrazzo Floor with no absorption	65
Fig. 73: Structure acting as a Volume Resonator	65
Fig. 74: Aesthetically Designed WahalKada, Retaining Walls as sound barriers	66
Fig. 75: Greeneries around the object acting as sound barriers	66
Fig. 76: Use of Highly reflective Materials inside the Hall	67
Fig. 77: Ceiling under Main Roof	67
Fig. 78: Greeneries and Boundary wall as an aesthetic noise barrier	68

,

¥

Pagy -

ABSTRACT:

Architecture is inherently an art form of the body and all our senses. It creates a meaningful framework for the activities of the man by controlling and regulating the interrelationship between the man and his living environment. Since architecture should be an occasion of making a place by adding continuous articulation of human habitat, the reproduction of freestanding buildings will become an environmental destruction. So, an architect, beyond the authentic artist, must engage to make concrete the ideal view of life. Architecture, as meaningful buildings, should communicate its meaning through the organization of elements, which are considered as timeless and fundamental vocabulary in architecture. However, the required state of mind or the mood in architectural spaces could be generated through various combinations and relationships of so called spatial volumes.

In consideration of acoustics as an aesthetic element, the architect has before him the aesthetic problem of unfamiliar forms because, in architecture, beauty and familiarity are closely linked in a manner more binding than in other arts. However, in designing an acoustically favorable space, architect should recognize and use acoustic character as the basics of his idea. Although he has new materials, there is no other process of making it beautiful than the old process used by long ago by Greek Architects of contemplative design - emphasizing the essential character, economizing effects and adding ornaments. So, it is obvious that, the factors making for good or bad acoustics are not all new: some of them were most fundamental to buildings in old period and have been recognized in the past by acute designers such as the builders of Greek Theatres. When attention has been paid to special acoustic requirements, certain standard types of architecture have arisen such as classic theatres, the Leipzig concert hall, the Italian opera house, and the English House of Commons. These types have given satisfaction for generation. So, the great history of architecture has to be touched to see the good performance of great architecture. They have been created through symbolic and emotional ideas of their traditions and the culture. Since the aesthetic experience is a matter of all our senses beyond the visual expression, the "aural environment" will be significant as an inherent attribute contributing to articulate human habitat in three-dimensional spatial volumes in architecture.