
A Dissertation Presented to The Faculty of Architecture University of Maratuwa Sri Lanka for M.Sc. (Architecture) Examination

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Roghithan Ratnam June 2001
abstract

This study is focused on the recently published 'Energy Efficient Building Code (EEBC) for Commercial Buildings in Sri Lanka' and its applicability for Sri Lankan office buildings. It attempts to examine the Building envelope and Air Conditioning aspects of the EEBC and the actual effect of the code towards energy saving. The relevant standards stipulated are critically evaluated. The energy saving guidelines and their implications and the effects in view of energy saving has been practically established. A "typical" average multi-storey office building of Colombo has been (computer) modelled. The "typical" case is developed by analysing the current office building practices in Colombo.

The said model is tested for different interior set-point temperatures and OTTVs (Overall Thermal Transfer Value), including the conditions stipulated in the EEBC, thereby discussing the most suitable combinations in Sri Lankan context.

It was found that considerable cooling load is needed to maintain the given standard by EEBC thereby leading to more energy consumption instead of energy saving. Probable ideal standards considering a balance of Energy efficiency and User comfort are obtained. In conclusion recommendations have been made for a better suitable EEBC for Sri Lanka.
acknowledgement

It is with great appreciation that I wish to thank in all sincerity all those who gave me valuable advice and various forms of assistance that contributed towards the success of this dissertation. I remember them with gratitude.

Dr. Rohinton Emmanuel, Senior Lecturer and Individual tutor, who has been the live wire of the whole process and for the valuable comments, suggestions and constructive guidance kindly rendered by him all through.

Dr. Ranjith Perera, Senior Lecturer for structuring the process and for the valuable criticism and encouragement at the initial stages.

Archt. Gamini Weerasinghe, Prof. JJ Kim for expressing their views, opinions and worthy comments.

Archt. Kumudu Munasinghe, Archt. Shayan Kumaradas, Ravi Subramanyam, Piyal Panappitiya and Dilashan Ferdinando for helping to get access for studies on buildings and providing all necessary information and details.

Narein, Pathy, Kosala, Gishan, Tharini, Geetha, Presintha and Upeksha for providing necessary assistance and information at the time of need.

Finally to dear mother and brothers for their persistent support right throughout.
Contents

Abstract

Acknowledgement

List of illustrations

Introduction

<table>
<thead>
<tr>
<th>Topic Explanation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Problem/ Issue</td>
<td>1</td>
</tr>
<tr>
<td>Justification</td>
<td>1</td>
</tr>
<tr>
<td>Objectives</td>
<td>1</td>
</tr>
<tr>
<td>Limitations</td>
<td>1</td>
</tr>
<tr>
<td>Method of Study</td>
<td>1</td>
</tr>
</tbody>
</table>

1.0 Chapter One - Background

1.1 Thermal comfort

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 Parameters of Thermal Comfort</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2 Operative, Equivalent and Effective Temperatures</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3 Thermal comfort index</td>
<td>6</td>
</tr>
<tr>
<td>1.1.4 Local Thermal Discomfort</td>
<td>7</td>
</tr>
<tr>
<td>1.1.5 Evaluating the Thermal Quality of a Room</td>
<td>8</td>
</tr>
</tbody>
</table>

1.2 Energy Consumption in Buildings

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1 Energy Consumption Pattern in Buildings</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2 Energy Consumption Pattern in Sri Lanka</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3 Energy Consumption in commercial Sectors</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1 Introduction</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2 Load Calculations</td>
<td>13</td>
</tr>
<tr>
<td>1.3.3 Temperature Controls</td>
<td>14</td>
</tr>
<tr>
<td>1.3.4 Building Envelope</td>
<td>15</td>
</tr>
</tbody>
</table>

1.4 Computer Simulation

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1 General Introduction</td>
<td>16</td>
</tr>
<tr>
<td>1.4.2 The Output/ Results Obtainable from DEROB</td>
<td>17</td>
</tr>
<tr>
<td>1.4.3 Text Data Produced by DEROB</td>
<td>18</td>
</tr>
</tbody>
</table>
2.0 Chapter Two - Methodology

2.1 Development of the 'typical multi-storey office building of Sri Lanka' 27
2.2 Input Data 31
 2.2.1 Climate data 31
 2.2.2 Internal Loads 31
 2.2.3 Data for OTTV 32
2.3 Analysis Technique 34
2.4 Hypothesis 37

3.0 Chapter Three- Results and Discussion

3.1 OTTV and Cooling Load 38
3.2 OTTV and Hourly Operative Temperature 40
3.3 OTTV, PMV and Operative Temperature distribution 42
3.4 Implications 45
 3.4.1 Means of reducing OTTV 45
 3.4.2 Improvements to EEBC 51

Conclusion 54
 Summary of Findings
 Recommendations
 Limitations of Study
 Directions for Further Study

Appendices 58

Bibliography 62
list of illustrations
List of Illustrations

Chapter 1
- Fig 1.1 effects of changes in core-body temperature 4
- Fig 1.2 measurement of environmental parameters 7
- Fig 1.3 integrated temperature 8
- Fig 1.4 integrated temperature parameters 8
- Fig 1.5 PMV and PPD 9
- Fig 1.6 percentage of dissatisfied from radiation 11
- Fig 1.7 percentage of dissatisfied from vertical air temperature difference 11
- Fig 1.8 percentage of dissatisfied from cold and warm floors 12
- Fig 1.9 measuring the thermal quality of a room 12
- Fig 1.10 energy consumption of major sectors 15
- Fig 1.11 end use of energy in buildings 15
- Fig 1.12 energy end use in commercial buildings 16

Chapter 2
- Fig 2.1 ceylinco seylan towers 27
- Fig 2.2 vauxhall tower 28
- Fig 2.3 7th floor office interior - vauxhall tower 28
- Fig 2.4 WTC twin towers 29
- Fig 2.5 DEROB 'typical' model 30
- Fig 2.6 R1 & R2 against SC 32
- Fig 2.7 equations for R1 & R2 33
- Fig 2.8 SC value for R1 & R2 = zero 33
- Fig 2.9 model #1 34
- Fig 2.10 OTTV calculation for model #1 34
- Fig 2.11 model #2 35
- Fig 2.12 OTTV calculation for model #2 35
- Fig 2.13 model #3 36
- Fig 2.14 OTTV calculation for model #3 36

Chapter 3
- Fig 3.1 OTTV 90 - cooling load comparison 38
- Fig 3.2 OTTV 45 - cooling load comparison 39
- Fig 3.3 OTTV 135 - cooling load comparison 39
- Fig 3.4 cooling load comparison for 240c set point temperature 40
- Fig 3.5 cooling load comparison for 270c set point temperature 40
- Fig 3.6 OT comparison for OTTV 90 41
- Fig 3.7 OT comparison for OTTV 45 41